Abstract:In many texture recognition problems, Local Binary Patterns (LBP) method is used for feature extraction. This method is based on comparison of each centre pixel and its neighbours' intensity value in image. Due to its simplicity of calculation, LBP has become one of the most popular feature extraction techniques. In literature, different neighbourhood topologies of LBP structure are given such as circle, square, ellipse, parabola, hyperbola, and Archimedean spiral. This paper focuses on the use of uniform and basic LBP that have spiral topology in texture classification. We first derive basic and uniform LBP features based on spiral topology. Then the performances of several classification methods such as linear discriminant analysis (LDA), linear regression classifier (LRC), support vector machines (SVM), Chi-square test, and G-test are compared using these features in UIUC texture database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.