The tumor suppressor p53 is a transcription factor that controls cellular growth and proliferation. p53 targets include RNA polymerase (pol) III-dependent genes encoding untranslated RNAs such as tRNA and 5S rRNA. These genes are repressed through interaction of p53 with TFIIIB, a TATA-binding protein (TBP)-containing factor. Although many studies have shown that p53 binds to TBP, the signi®cance of this interaction has remained elusive. Here we demonstrate that the TBP±p53 interaction is of functional importance for regulating RNA pol III-transcribed genes. Unlike RNA pol II-dependent promoter repression, overexpressing TBP can reverse inhibition of tRNA gene transcription by p53. p53 does not disrupt the direct interaction between the TFIIIB subunits TBP and Brf1, but prevents the association of Brf1 complexes with TFIIIC2 and RNA pol III. Using chromatin immunoprecipitation assays, we found that TFIIIB occupancy on tRNA genes markedly decreases following p53 induction, whereas binding of TFIIIC2 to these genes is unaffected. Together our results support the idea that p53 represses RNA pol III transcription through direct interactions with TBP, preventing promoter occupancy by TFIIIB.
Our previous studies have demonstrated that the level of the central transcription factor TATA-binding protein (TBP) is increased in cells expressing the hepatitis B virus (HBV) X protein through the activation of the Ras signaling pathway, which serves to enhance both RNA polymerase I and III promoter activities. To understand the mechanism by which TBP is regulated, we have investigated whether enhanced expression is modulated at the transcriptional level. Nuclear run-on assays revealed that the HBV X protein increases the number of active transcription complexes on the TBP gene. In transient-transfection assays with both transformed and primary hepatocytes, the human TBP promoter was shown to be induced by expression of the HBV X protein in a Ras-dependent manner, requiring both Ral guanine nucleotide dissociation stimulator (Ral-GDS) and Raf signaling. Transient overexpression of TBP did not affect TBP promoter activity. To further delineate the downstream Ras-mediated events contributing to TBP promoter regulation in primary rat hepatocytes, the best-characterized Ras effectors, Raf, phosphoinositide 3-kinase (PI-3 kinase), and RalGDS, were examined. Activation of either Raf or RalGDS, but not that of PI-3 kinase, was sufficient to induce TBP promoter activity. Both Raf-and RalGDS-mediated induction required the activation of mitogen-activated protein kinase kinase (MEK). In addition, another distinct Ras-activated pathway, which does not require MEK activation, appears to induce TBP promoter activity. Analysis of the DNA sequence requirement within the TBP promoter responsible for these regulatory events defined three distinct regions that modulate the abilities of Raf, RalGDS, and the Ras-dependent, MEK-independent pathways to regulate human TBP promoter activity. Together, these results provide new evidence that TBP can be regulated at the transcriptional level and identify three distinct Ras-activated pathways that modulate this central eukaryotic transcription factor.The TATA-binding protein (TBP) is a central factor used in the transcription of all eukaryotic genes (18). TBP is assembled into at least three distinct protein complexes, SL1, transcription factor IID (TFIID), and TFIIIB, by its association with different TBP-associated factors, which then specifies its role in the transcription of the RNA polymerase I, II, and III promoters, respectively. In promoters containing a TATA element, these TBP complexes are recruited through direct interaction of TBP with the DNA. In contrast, TBP is recruited to promoters that lack a TATA element via protein-protein interactions. The recruitment of TBP to TATA-containing promoters has been shown to be a rate-limiting step for transcription activation (for a review, see reference 27). Thus, alterations in the cellular levels of TBP could produce global changes in cellular gene activity.Although the role of TBP in the formation of transcription initiation complexes has been well studied, little is known regarding potential cellular events that might regulate th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.