In recent years, the widely explored phenomenon “aggregation-induced emission (AIE)” has played a crucial role in the development of luminescent materials for light-emitting applications. In the same direction, the contribution of its sister concept “AIE switching” has been impressive. In comparison, the application of this concept in the field of biosensing or bioimaging is still in its infancy. Therefore, to shed light into the sensing of bioanalytes, we have developed a new perylenediimide (PDI)-based small fluorescent probe, benzoannulated PDI (Bp(Im)2MA), that selectively detects diamines and biogenic amines (BAs) in solution via an “AIE-switching” phenomenon. The synthesized probe containing the bay-annulated anhydride moiety exhibits strong cyan emission in solution. In the mechanism, we have shown that the terminal free amine group of BAs readily reacts with a highly reactive anhydride moiety, which opens the cyclic anhydride moiety. In the open conformation, the free amine group along with a carboxylate group modulates the polarity of the system strikingly. Because of this induced polarity, the monomer of Bp(Im)2MA-BAs conjugate aggregated in solution, thereby exhibiting a significant change in emission property in solution. This method may also be called a very simple and straightforward “naked eye” detection of BAs in solution, with a nanomolar detection limit. A detailed spectroscopic and microscopic investigation demonstrated the existence of the aggregated state. As the reporter dye also emits strongly in the solid state (yellowish orange), it therefore instantly made vapor-phase detection of BAs feasible. Finally, this vapor-phase detection of BAs by the probe was applied very effectively in the determination of spoilage of raw fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.