Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca 2C ] cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca 2C ] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.
Present investigations report the presence of strigolactones (SLs) and photomodulation of their biosynthesis in sunflower seedlings (roots, cotyledons and first pair of leaves) during early phase of seedling development. Qualitative analyses and characterization by HPLC, ESI-MS and FT-IR revealed the presence of more than one type of SLs. Orobanchyl acetate was detected both in roots and leaves. Five-deoxystrigol, sorgolactone and orobanchol were exclusively detected in seedling roots. Sorgomol was detectable only in leaves. HPLC eluted fraction from seedling roots and leaves co-chromatographing with GR24 (a synthetic SL) could also bring about germination in Orobanche cernua (a weed) seeds, which are established to exhibit SL -mediated germination, thereby indicating the SL identity of the eluates using this bioassay. SLs accumulation was always more in the roots of light-grown seedlings, it being maximum at 4 d stage. Although significant activity of carotenoid cleavage dioxygenase (CCD, the enzyme critical for SL biosynthesis) was detected in 2 d old seedling roots, SLs remained undetectable in cotyledons at all stages of development and also in the roots of 2 d old light and dark-grown seedlings. Roots of light-grown seedlings showed maximum CCD activity during early (2 d) stage of development, thereby confirming photomodulation of enzyme activity. These observations indicate the migration of a probable light-sensitized signaling molecule (yet to be identified) or a SL precursor from light exposed aerial parts to the seedling roots maintained in dark. Thus, a photomodulation and migration of SL precursor/s is evident from the present work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.