Melanoma is a specific type of skin cancer that can be lethal if not diagnosed and treated early. This paper presents a deep-learning approach for the automatic identification of melanoma on dermoscopic images from the ISIC Archive dataset and non-dermoscopic images from the MED-NODE dataset. The method involves the development of Convolutional Neural Network (CNN) and ResNet50 models, along with various pre-processing techniques. The CNN and ResNet50 models detect melanoma from dermoscopic images with 98.07% and 99.83% accuracy respectively, using hair removal and augmentation techniques. For non-dermoscopic images, the CNN and ResNet50 models achieve an accuracy of 97.06% and 100% respectively, using the hair removal technique. Furthermore, combining age and gender as additional factors in identifying melanoma in dermoscopic images, leads to an accuracy of 96.40% using CNN. The results of this research suggest that the developed models when combined with various pre-processing techniques and the integration of age and gender as additional factors, can be an efficient tool in the early detection of melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.