We give some characterizations of the rectifying curves in the dual space and show that rectifying dual space curves can be stated with the aid of dual unit spherical curves. Thus, we have a link between rectifying dual space curves and classical surfaces in the Euclidean three-space.
In this paper, we study geometry of mappings of spatial kinematics in Lorentzian space with the aid of dual number and split quaternion. Also, we give orthogonal rotation matrix A with respect to the Lorentzian Rodrigues parameters and the Lorentzian Euler parameters in such a space. Then, Study's soma is developed and used to define the mapping of spatial kinematics into points of a dual Lorentzian projective space.
Lorentz Uzayında Uzaysal Kinematiklerin Geometrisi Üzerine Bir ÇalışmaAnahtar Kelimeler Dual sayı, Euler parametreleri, Lorentz uzay, Uzaysal kinematik, Split kuaterniyon Özet: Bu çalışmada, dual sayı ve split kuaterniyon yardımıyla Lorentz uzayında uzaysal kinematiklerin dönüşümlerinin geometrisi ele alınmıştır. Ayrıca, bu uzayda bir A ortogonal dönüşüm matrisi, Lorentziyen Rodrigues ve Euler parametrelerine göre verilmiştir. Son olarak, Study'nin "soma" olarak isimlendirdigi dönüşüm uzayı geliştirilmiş ve bu yapı bir dual Lorentz projektif uzayın noktaları içinde uzaysal kinematiklerin dönüşümünü tanımlamak için kullanılmıştır.
In this work, we derive the Euler-Lagrange equation for an elastic line which is lying on a pseudohypersurface in pseudo-Euclidean spaces E n ν . Following this, we check the solutions which depend on the boundary conditions whether they are geodesic on a pseudo-hypersurface or not. The relaxed elastic line on a pseudo-hyperplane, a pseudo-hypersphere, and pseudo-hyperbolic space is a geodesic. However, the relaxed elastic line on a pseudo-hypercylinder, is a space-like geodesic. 2005 Elsevier Inc. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.