A combined technological scheme for purification of undiluted high-strength wastewater produced in the shale oil industry was proposed. The initial values of chemical oxygen demand (COD), biological oxygen demand (BOD 7) and phenols in the studied pyrogenic wastewater samples were up to 45, 35 and 1 g/L, respectively. Furthermore, the wastewater had a high toxicity to indicator organism Daphnia Magna (EC 50 = 0.34%) and caused inhibition of oxygen uptake rate (IC 50 = 3.4%) and nitrification rate (IC 50 = 0.7%) in activated sludge treatment. The combination of air stripping, coagulation-flocculation, batch distillation, activated sludge and the Fenton oxidation processes reduced all measured parameters more than 95%. Consequently, a treatment scheme applicable to pyrogenic wastewater was developed.
The efficiency of goethite, magnetite and iron powder (Fe0) in catalysing the Fenton-based oxidation of picric acid (PA) in aqueous solution was studied. The effect of pH, hydrogen peroxide concentration, and catalyst type and dosage on treatment efficacy was investigated. The adsorption of PA from aqueous solution by heterogeneous catalysts was also examined. The results demonstrated negligible PA removal in H2O2/alpha-FeOOH and H2O2/Fe3O4 systems independent of process pH, and hydrogen peroxide and catalyst dosage. The PA adsorption effects of both iron oxides turned out to be insignificant for all studied pH values and catalyst dosages. The H2O2/Fe0 system proved efficient at degrading PA, but only under acidic conditions (pH 3). The results indicated that, due to rather fast leaching of ferrous ions from the iron powder surface, PA degradation was carried out mainly by the classic Fenton oxidation mechanism in the bulk solution. The adsorption of PA onto the iron powder surface may also contribute to the overall efficiency of PA degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.