Accurate representations of slip and transitional flow regimes present a challenge in the simulation of rarefied gas flow in confined systems with complex geometries. In these regimes, continuum-based formulations may not capture the physics correctly. This work considers a regularized multi-relaxation time lattice Boltzmann (LB) method with mixed Maxwellian diffusive and halfway bounce-back wall boundary treatments to capture flow at high Kn. The simulation results are validated against atomistic simulation results from the literature. We examine the convergence behavior of LB for confined systems as a function of inlet and outlet treatments, complexity of the geometry, and magnitude of pressure gradient and show that convergence is sensitive to all three. The inlet and outlet boundary treatments considered in this work include periodic, pressure, and a generalized periodic boundary condition. Compared to periodic and pressure treatments, simulations of complex domains using a generalized boundary treatment conserve mass but require more iterations to converge. Convergence behavior in complex domains improves at higher magnitudes of pressure gradient across the computational domain, and lowering the porosity deteriorates the convergence behavior for complex domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.