From a single meter that measures the entire home’s electrical demand, energy disaggregation calculates appliance-by-appliance electricity consumption. Non-intrusive load monitoring (NILM), also known as energy disaggregation, tries to decompose aggregated energy consumption data and estimate each appliance’s contribution. Recently, methodologies based on Artificial Intelligence (AI) have been proposed commonly used in these models, which can be expensive to run on a server or prohibitive when the target device has limited capabilities. AI-based models are typically computationally expensive and require a lot of storage. It is not easy to reduce the computing cost and size of a neural network without sacrificing performance. This study proposed an efficient non-parametric supervised machine learning network (ENSML) architecture with a smaller size, and a quick inference time without sacrificing performance. The proposed architecture can maximise energy disaggregation performance and predict new observations based on past ones. The results showed that employing the ENSML model considerably increased the accuracy of energy prediction in 99 percent of cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.