The versatility of polymeric materials as healing agents to prevent any structure failure and their ability to restore their initial mechanical properties has attracted interest from many researchers. Various applications of the self-healing polymeric materials are explored in this paper. The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites. This paper also presents the different types of self-healing polymeric materials applied in various applications, which include electronics, coating, aerospace, medicals, and construction fields. It is expected that this review gives a significantly broader idea of self-healing polymeric materials and their healing mechanisms in various types of applications.
Stem cell-based therapy appears as a promising strategy to induce regeneration of damaged and diseased tissues. However, low survival, poor engraftment and a lack of site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues and offer several advantages as cell delivery vehicles. They have become very popular due to their unique properties such as high-water content, biocompatibility, biodegradability and flexibility. Polysaccharide polymers can be physically or chemically crosslinked to construct biomimetic hydrogels. Their resemblance to living tissues mimics the native three-dimensional extracellular matrix and supports stem cell survival, proliferation and differentiation. Given the intricate nature of communication between hydrogels and stem cells, understanding their interaction is crucial. Cells are incorporated with polysaccharide hydrogels using various microencapsulation techniques, allowing generation of more relevant models and further enhancement of stem cell therapies. This paper provides a comprehensive review of human stem cells and polysaccharide hydrogels most used in regenerative medicine. The recent and advanced stem cell microencapsulation techniques, which include extrusion, emulsion, lithography, microfluidics, superhydrophobic surfaces and bioprinting, are described. This review also discusses current progress in clinical translation of stem-cell encapsulated polysaccharide hydrogels for cell delivery and disease modeling (drug testing and discovery) with focuses on musculoskeletal, nervous, cardiac and cancerous tissues.
Increased life expectancy has led to an increase in the use of bone substitutes in numerous nations, with over two million bone-grafting surgeries performed worldwide each year. A bone defect can be caused by trauma, infections, and tissue resections which can self-heal due to the osteoconductive nature of the native extracellular matrix components. However, natural self-healing is time-consuming, and new bone regeneration is slow, especially for large bone defects. It also remains a clinical challenge for surgeons to have a suitable bone substitute. To date, there are numerous potential treatments for bone grafting, including gold-standard autografts, allograft implantation, xenografts, or bone graft substitutes. Tricalcium phosphate (TCP) and hydroxyapatite (HA) are the most extensively used and studied bone substitutes due to their similar chemical composition to bone. The scaffolds should be tested in vivo and in vitro using suitable animal models to ensure that the biomaterials work effectively as implants. Hence, this article aims to familiarize readers with the most frequently used animal models for biomaterials testing and highlight the available literature for in vivo studies using small and large animal models. This review summarizes the bio ceramic materials, particularly HA and β-TCP scaffolds, for bone defects in small and large animal models. Besides, the design considerations for the pre-clinical animal model selection for bone defect implants are emphasized and presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.