We prove that it is decidable if a finitely based permutation class contains infinitely many simple permutations, and establish an unavoidable substructure result for simple permutations: every sufficiently long simple permutation contains an alternation or oscillation of length k.
In this paper we consider the question of well quasi-order for classes defined by a single obstruction within the classes of all graphs, digraphs and tournaments, under the homomorphic image ordering (in both its standard and strong forms). The homomorphic image ordering was introduced by the authors in a previous paper and corresponds to the existence of a surjective homomorphism between two structures. We obtain complete characterizations in all cases except for graphs under the strong ordering, where some open questions remain.
Abstract. Given a word w over a finite alphabet, we consider, in three special cases, the generalised star-height of the languages in which w occurs as a contiguous subword (factor) an exact number of times and of the languages in which w occurs as a contiguous subword modulo a fixed number, and prove that in each case it is at most one. We use these combinatorial results to show that any language recognised by a Rees (zero-)matrix semigroup over an abelian group is of generalised star-height at most one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.