Biofuels have become an attractive alternative fuel because of their possible environmental benefits and the current concern over the depletion of fossil fuel sources. The demand for biofuels will rise in the future due to the rise in the price of fossil fuel, energy security reasons, environmental and economical issues. Vegetable oils are the most common feedstocks and are converted into liquid fuels due to their high energy density, liquid nature and availability as a renewable feedstock. Several types of vegetable oils with a diversified composition in fatty acids can be used. Beside edible vegetable oils, non-edible and used cooking oils have also received considerable attention because they do not compete with food sources and are less costly to procure. Beside vegetable oils, bio-oil obtained from the pyrolysis of biomass has also been upgraded through catalytic cracking process to obtain biofuel. Catalytic cracking is one of the most efficient methods to produce biofuel, especially biogasoline, by cracking of vegetable oil in the presence of suitable catalyst. The catalytic cracking of edible and non-edible oils requires the development of proper cracking catalysts and reactors for the production of biogasoline. The present article summarizes progress in the development of the technology in biofuel production via catalytic cracking. The paper also covers the different types of feedstock suitable for the production of biofuel, potential cracking catalysts, catalytic cracking mechanisms, different types of catalytic reactors, and biofuel characteristics. Important issues like catalyst choice and reactor design must be addressed before catalytic cracking can be commercially implemented. The paper also presents the future prospects of this technology in biorefineries for the production of biofuels.
Broader contextBiofuels are important renewable energy sources which will substitute petroleum fuels in the near future. Catalytic cracking is one of the most efficient methods to crack renewable feedstock in the presence of catalyst to produce biofuel. Beside edible vegetable oils, non-edible and used cooking oils have received considerable attention as feedstocks for the production of biofuel. The catalytic cracking of edible and non-edible oils requires the development of proper cracking catalysts and reactors for the production of biofuel such as biogasoline. The present article summarizes progress in the development of catalytic cracking technology in the biofuel production. This review covers the feedstocks, catalysts, reactors, biofuel characteristics, research done in Malaysia in the area of biofuel, and future prospects of this technology to be implemented in the biorefinery for the production of biofuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.