The corrosion inhibition effect of two quinoline derivatives, viz. 2-chloro quinoline 3-carbaldehyde (CQC) and (2-chloro-quinoline-3ylmethyl)-p-tolyl-amine (CQA) have been investigated against mild steel (MS) in 1N HCl solution using conventional weight loss, potentiodynamic polarization, linear polarization and electrochemical impedance spectroscopy. The losses in weights of MS samples have proved that both CQC and CQA are efficient inhibitors of corrosion. The mixed mode of inhibition was confirmed by electrochemical polarizations. The results of electrochemical impedance spectroscopy have showed changes in the impedance parameters like charge transfer resistance and double-layer capacitance that confirmed strong adsorption of inhibitors on the MS surface. The inhibition action of these compounds was assumed to occur via adsorption on the steel surface through the active centres contained in the molecules. Furthermore, quantum chemical calculations have been performed at B3LYP/6-31G(d, p) level to complement the experimental evidence.
Extract ofFicus exasperataleaves was investigated as corrosion inhibitor of mild steel in 1 N H2SO4using conventional weight loss, electrochemical polarizations, electrochemical impedance spectroscopy and scanning electron microscopic studies. The weight loss results showed that the extract ofFicus exasperatais excellent corrosion inhibitor. Electrochemical polarizations data revealed the mixed mode of inhibition. The results of electrochemical impedance spectroscopy shows that the change in the impedance parameters, charge transfer resistance and double layer capacitance, with the change in concentration of the extract is due to the adsorption of active molecules leading to the formation of a protective layer on the surface of mild steel. Scanning electron microscopic studies provided the confirmatory evidence of improved surface condition, due to the adsorption, for the corrosion protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.