The extensive production and use of harmful pesticides in agriculture to improve crop yield has raised concerns about their potential threat to living components of the environment. Pesticides cause serious environmental and health problems both to humans and animals. Carbendazim (CBZ) is a broad spectrum fungicide that is used to control or effectively kill pathogenic microorganisms. CBZ is a significant contaminant found in food, soil and water. It exerts immediate and delayed harmful effects on humans, invertebrates, aquatic animals and soil microbes when used extensively and repeatedly. CBZ is a teratogenic, mutagenic and aneugenic agent that imparts its toxicity by enhancing generation of reactive oxygen species generation. It elevates the oxidation of thiols, proteins and lipids and decreases the activities of antioxidant enzymes. CBZ is cytotoxic causing hematological abnormalities, mitotic spindle deformity, inhibits mitosis and alters cell cycle events which lead to apoptosis. CBZ is known to cause endocrine-disruption, embryo toxicity, infertility, hepatic dysfunction and has been reported to be one of the leading causes of neurodegenerative disorders. CBZ is dangerous to human health, the most common side effects upon chronic exposure are thyroid gland dysfunction and oxidative hepato-nephrotoxicity. In mammals, CBZ has been shown to disrupt the antioxidant defense system. In this review, CBZ-induced toxicity in different cells, tissues and organisms, under in vitro and in vivo conditions, has been systematically discussed.
Arsenic (As) is a potent environmental toxicant and chronic exposure to it results in various malignancies in humans. Oxidative stress has been implicated in the etiopathogenesis of As-induced toxicity. This investigated the protective effect of plant antioxidant 3,4-dihydroxybenzaldehyde (DHB) on sodium meta-arsenite (SA), an As-(III) compound, induced oxidative damage in human red blood cells (RBC). The RBC were first incubated with different concentrations of DHB and then treated with SA at 37°C. Hemolysates were prepared and assayed for various biochemical parameters. Treatment of RBC with SA alone enhanced the generation of reactive oxygen species and increased lipid and protein oxidation. Reduced glutathione levels, total sulfhydryl content and cellular antioxidant power were significantly decreased in SA alone treated RBC, compared to the untreated control cells. This was accompanied by membrane damage, alterations in activities of antioxidant enzymes and deranged glucose metabolism. Incubation of RBC with DHB, prior to treatment with SA, significantly and dose-dependently attenuated the SA-induced changes in all these parameters. Scanning electron microscopy of RBC confirmed these biochemical results. Treatment of RBC with SA alone converted the biconcave discoids to echinocytes but the presence of DHB inhibited this conversion and the RBC retained their normal shape. These results show that DHB protects human RBC from SA-induced oxidative damage, most probably due to its antioxidant character.
Arsenic (As) is an air and water toxicant that causes cancer in multiple organs. Humans are exposed to As through contaminated water. We have examined the cytotoxicity of sodium meta-arsenite (SA), an As(III) compound, in human red blood cells (RBC) under in vitro conditions. Haemolysates were prepared from human RBC treated with different concentrations of SA (0.1-5.0 mM) for 5 h at 37 °C. SA treatment of RBC caused significant increase in methaemoglobin formation, protein and lipid oxidation, and nitric oxide levels. It also resulted in decrease in glutathione levels, methaemoglobin reductase activity and plasma membrane redox system. SA exposure also inhibited the pathways of glucose metabolism while increasing AMP deaminase and glyoxalase-I. It impaired the enzymatic and non-enzymatic antioxidant defence systems which resulted in decreased antioxidant power and a compromised ability to quench free radicals. SA exposure also damaged the membrane since it decreased the activity of membrane bound enzymes, increased the osmotic fragility of treated cells and induced gross morphological changes. This cytotoxicity was the result of oxidative damage since the production of reactive oxygen species (ROS) was increased in SA treated erythrocytes. Thus As(III) causes extensive damage to RBC which impairs their antioxidant system and alters the major cellular metabolic pathways. All this has the potential to lower the oxygen carrying capacity of RBC and reduce their lifespan in blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.