Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that Factin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of Ccadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N-and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs.
BackgroundRetinal microvascular imaging is an especially promising application of high resolution imaging since there are increasing options for therapeutic intervention and need for better structural and functional biomarkers to characterize ocular and systemic vascular diseases.Main bodyAdaptive optics scanning light ophthalmoscopy (AOSLO) is an emerging technology for improving in vivo imaging of the human retinal microvasculature, allowing unprecedented visualization of retinal microvascular structure, measurements of blood flow velocity, and microvascular network mapping. This high resolution imaging technique shows significant potential for studying physiological and pathological conditions of the retinal microvasculature noninvasively.ConclusionThis review will briefly summarize the abilities of in vivo human retinal microvasculature imaging in healthy controls, as well as patients with diabetic retinopathy, retinal vein occlusion, and sickle cell retinopathy using AOSLO and discuss its potential contribution to scientific research and clinical applications.
BackgroundTrained medical interpreters are instrumental to patient satisfaction and quality of care. They are especially important in student-run clinics, where many patients have limited English proficiency. Because student-run clinics have ties to their medical schools, they have access to bilingual students who may volunteer to interpret, but are not necessarily formally trained.MethodsTo study the feasibility and efficacy of leveraging medical student volunteers to improve interpretation services, we performed a pilot study at the student-run clinic at the Icahn School of Medicine at Mount Sinai. In each fall semester in 2012–2015, we implemented a 6-h course providing didactic and interactive training on medical Spanish interpreting techniques and language skills to bilingual students. We then assessed the impact of the course on interpreter abilities.ResultsParticipants’ comfort levels, understanding of their roles, and understanding of terminology significantly increased after the course (p < 0.05), and these gains remained several months later (p < 0.05) and were repeated in an independent cohort. Patients and student clinicians also rated participants highly (averages above 4.5 out of 5) on these measures in real clinical encounters.ConclusionsThese findings suggest that a formal interpreter training course tailored for medical students in the setting of a student-run clinic is feasible and effective. This program for training qualified student interpreters can serve as a model for other settings where medical students serve as interpreters.Electronic supplementary materialThe online version of this article (doi:10.1186/s12909-016-0760-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.