Micro Air Vehicles (MAVs) are increasingly being used for complex or hazardous tasks in enclosed and cluttered environments such as surveillance or search and rescue. With this comes the necessity for sensors that can operate in poor visibility conditions to facilitate with navigation and avoidance of objects or people. Radar sensors in particular can provide more robust sensing of the environment when traditional sensors such as cameras fail in the presence of dust, fog or smoke. While extensively used in autonomous driving, miniature FMCW radars on MAVs have been relatively unexplored. This study aims to investigate to what extent this sensor is of use in these environments by employing traditional signal processing such as multi-target tracking and velocity obstacles. The viability of the solution is evaluated with an implementation on board a MAV by running trial tests in an indoor environment containing obstacles and by comparison with a human pilot, demonstrating the potential for the sensor to provide a more robust sense and avoid function in fully autonomous MAVs.
In this paper, we introduce the Obstacle Detection & Avoidance (ODA) Dataset for Drones, aiming at providing raw data obtained in a real indoor environment with sensors adapted for aerial robotics in the context of obstacle detection and avoidance. Our micro air vehicle (MAV) is equipped with the following sensors: (i) an event-based camera, the performance of which makes it optimized for drone applications; (ii) a standard RGB camera; (iii) a 24-GHz radar sensor to enhance multi-sensory solutions; and (iv) a 6-axes IMU. The ground truth position and attitude are provided by an OptiTrack motion capture system. The resulting dataset consists of more than 1350 sequences obtained in four distinct conditions (one or two obstacles, full or dim light). It is intended for benchmarking algorithmic and neural solutions for obstacle detection and avoidance with UAVs, but also course estimation and in general autonomous navigation. The dataset is available at: https://github.com/tudelft/ODA_Dataset [6].
CCS CONCEPTS• Computer systems organization → Robotic autonomy; Robotic control; Sensors and actuators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.