Although the number of autism diagnoses is on the rise, we have no evidence-based tracking of size and severity of gaps in access to autism-related resources, nor do we have methods to geographically triangulate the locations of the widest gaps in either the US or elsewhere across the globe. To combat these related issues of (1) mapping diagnosed cases of autism and (2) quantifying gaps in access to key intervention services, we have constructed a crowd-based mobile platform called “GapMap” (http://gapmap.stanford.edu) for real-time tracking of autism prevalence and autism-related resources that can be accessed from any mobile device with cellular or wireless connectivity. Now in beta, our aim is for this Android/iOS compatible mobile tool to simultaneously crowd-enroll the massive and growing community of families with autism to capture geographic, diagnostic, and resource usage information while automatically computing prevalence at granular geographical scales to yield a more complete and dynamic understanding of autism resource epidemiology.
BackgroundFor individuals with autism spectrum disorder (ASD), finding resources can be a lengthy and difficult process. The difficulty in obtaining global, fine-grained autism epidemiological data hinders researchers from quickly and efficiently studying large-scale correlations among ASD, environmental factors, and geographical and cultural factors.ObjectiveThe objective of this study was to define resource load and resource availability for families affected by autism and subsequently create a platform to enable a more accurate representation of prevalence rates and resource epidemiology.MethodsWe created a mobile application, GapMap, to collect locational, diagnostic, and resource use information from individuals with autism to compute accurate prevalence rates and better understand autism resource epidemiology. GapMap is hosted on AWS S3, running on a React and Redux front-end framework. The backend framework is comprised of an AWS API Gateway and Lambda Function setup, with secure and scalable end points for retrieving prevalence and resource data, and for submitting participant data. Measures of autism resource scarcity, including resource load, resource availability, and resource gaps were defined and preliminarily computed using simulated or scraped data.ResultsThe average distance from an individual in the United States to the nearest diagnostic center is approximately 182 km (50 miles), with a standard deviation of 235 km (146 miles). The average distance from an individual with ASD to the nearest diagnostic center, however, is only 32 km (20 miles), suggesting that individuals who live closer to diagnostic services are more likely to be diagnosed.ConclusionsThis study confirmed that individuals closer to diagnostic services are more likely to be diagnosed and proposes GapMap, a means to measure and enable the alleviation of increasingly overburdened diagnostic centers and resource-poor areas where parents are unable to diagnose their children as quickly and easily as needed. GapMap will collect information that will provide more accurate data for computing resource loads and availability, uncovering the impact of resource epidemiology on age and likelihood of diagnosis, and gathering localized autism prevalence rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.