A high energy-density Sn anode capable of displaying superior operating voltages and capacity, for rechargeable Mg-ion batteries, is highlighted. The intended application and performance of the anode is confirmed by coupling it with a Mo(6)S(8) cathode in a conventional battery electrolyte.
The interface between Mg metal and electrolyte is a key factor affecting Mg battery performance. Switchable interfacial phenomena, involving apparent surface electrochemical inhibition under open-circuit voltage and reactivation upon electrochemical polarization, were investigated with various Mg electrolyte systems, under both electrochemically static and dynamic conditions. Most notably, it was found that such behavior appears to be unique for the Mg system, implying that correct control of the interface is of considerable practical concern in Mg batteries. This new challenge must be addressed in order to achieve high-energy and high-durability rechargeable Mg batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.