SummaryCilia/flagella are highly conserved organelles that play diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia/flagella often result in primary ciliary dyskinesia (PCD). However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a novel gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in PCD patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.
Using a whole-exome sequencing strategy, we identified recessive CCNO (encoding cyclin O) mutations in 16 individuals suffering from chronic destructive lung disease due to insufficient airway clearance. Respiratory epithelial cells showed a marked reduction in the number of multiple motile cilia (MMC) covering the cell surface. The few residual cilia that correctly expressed axonemal motor proteins were motile and did not exhibit obvious beating defects. Careful subcellular analyses as well as in vitro ciliogenesis experiments in CCNO-mutant cells showed defective mother centriole generation and placement. Morpholino-based knockdown of the Xenopus ortholog of CCNO also resulted in reduced MMC and centriole numbers in embryonic epidermal cells. CCNO is expressed in the apical cytoplasm of multiciliated cells and acts downstream of multicilin, which governs the generation of multiciliated cells. To our knowledge, CCNO is the first reported gene linking an inherited human disease to reduced MMC generation due to a defect in centriole amplification and migration.
Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry1. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.
SUMMARY Dyx1c1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deletion of Dyx1c1 exons 2–4 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder characterized by chronic airway disease, laterality defects, and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1c.T2A start codon mutation recovered from an ENU mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also created laterality and ciliary motility defects. In humans, recessive loss-of-function DYX1C1 mutations were identified in twelve PCD individuals. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans revealed disruptions of outer and inner dynein arms (ODA/IDA). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA/IDA assembly factor DNAAF2/KTU. Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).
Rationale: Primary ciliary dyskinesia (PCD) is characterized by recurrent airway infections and randomization of left-right body asymmetry. To date, autosomal recessive mutations have only been identified in a small number of patients involving DNAI1 and DNAH5, which encode outer dynein arm components. Methods: We screened 109 white PCD families originating from Europe and North America for presence of DNAH5 mutations by haplotype analyses and/or sequencing. Results: Haplotype analyses excluded linkage in 26 families. In 30 PCD families, we identified 33 novel (12 nonsense, 8 frameshift, 5 splicing, and 8 missense mutations) and two known DNAH5 mutations. We observed clustering of mutations within five exons harboring 27 mutant alleles (52%) of the 52 detected mutant alleles. Interestingly, 6 (32%) of 19 PCD families with DNAH5 mutations from North America carry the novel founder mutation 10815delT. Electron microscopic analyses in 22 patients with PCD with mutations invariably detected outer dynein arm ciliary defects. Highresolution immunofluorescence imaging of respiratory epithelial cells from eight patients with DNAH5 mutations showed mislocalization of mutant DNAH5 and accumulation at the microtubule organizing centers. Mutant DNAH5 was absent throughout the ciliary axoneme in seven patients and remained detectable in the proximal ciliary axoneme in one patient carrying compound heterozygous splicing mutations at the 3-end (IVS75-2AϾT, IVS76ϩ5GϾA). In a preselected subpopulation with documented outer dynein arm defects (n ϭ 47), DNAH5 mutations were identified in 53% of patients. Conclusions: DNAH5 is frequently mutated in patients with PCD exhibiting outer dynein arm defects and mutations cluster in five exons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.