Nonsyndromic cleft lip with or without cleft palate (nsCL/P) is among the most common human birth defects with multifactorial etiology. Here, we present results from a genome-wide imputation study of nsCL/P in which, after adding replication cohort data, four novel risk loci for nsCL/P are identified (at chromosomal regions 2p21, 14q22, 15q24 and 19p13). On a systematic level, we show that the association signals within this high-density dataset are enriched in functionally-relevant genomic regions that are active in both human neural crest cells (hNCC) and mouse embryonic craniofacial tissue. This enrichment is also detectable in hNCC regions primed for later activity. Using GCTA analyses, we suggest that 30% of the estimated variance in risk for nsCL/P in the European population can be attributed to common variants, with 25.5% contributed to by the 24 risk loci known to date. For each of these, we identify credible SNPs using a Bayesian refinement approach, with two loci harbouring only one probable causal variant. Finally, we demonstrate that there is no polygenic component of nsCL/P detectable that is shared with nonsyndromic cleft palate only (nsCPO). Our data suggest that, while common variants are strongly contributing to risk for nsCL/P, they do not seem to be involved in nsCPO which might be more often caused by rare deleterious variants. Our study generates novel insights into both nsCL/P and nsCPO etiology and provides a systematic framework for research into craniofacial development and malformation.
Cleft palate is a common congenital disorder that affects up to 1 in 2500 live births and results in considerable morbidity to affected individuals and their families. The aetiology of cleft palate is complex with both genetic and environmental factors implicated. Mutations in the transcription factor p63 are one of the major individual causes of cleft palate; however, the gene regulatory networks in which p63 functions remain only partially characterized. Our findings demonstrate that p63 functions as an essential regulatory molecule in the spatio-temporal control of palatal epithelial cell fate to ensure appropriate fusion of the palatal shelves. Initially, p63 induces periderm formation and controls its subsequent maintenance to prevent premature adhesion between adhesion-competent, intra-oral epithelia. Subsequently, TGFβ3-induced down-regulation of p63 in the medial edge epithelia of the palatal shelves is a pre-requisite for palatal fusion by facilitating periderm migration from, and reducing the proliferative potential of, the midline epithelial seam thereby preventing cleft palate.
Understanding human cognitive ageing is important to improve the health of an increasing elderly population. Serum uric acid levels have been linked to many ageing illnesses and are also linked to cognitive functioning, though the direction of the association is equivocal. SLC2A9, a urate transporter, influences uric acid levels. This study first tested four SLC2A9 SNPs, previously associated with uric acid levels, in approximately 1000 Scots: the Lothian Birth Cohort 1936 (LBC1936). These participants were tested on general cognitive ability at ages 11 and 70. At age 70, they took a battery of diverse cognitive tests. Two replication cohorts were investigated. First, the LBC1921, who were tested on general cognitive ability at age 11. At ages 79 (n = 520), 83 (n = 281) and age 87 (n = 177), they completed cognitive ability test batteries. Second, the Edinburgh Type 2 Diabetes Study (ET2DS) were tested for cognitive abilities aged between 60 and 75 years (n = 1066). All analyses were adjusted for age, gender, body mass index and either childhood cognitive ability test score (LBC) or vocabulary-a measure of prior cognitive ability in ET2DS. Significant associations were detected with SLC2A9 and a general memory factor in LBC1936 and other individual cognitive ability tests (lowest P = 0.0002). The association with logical memory replicated in LBC1921 at all ages (all P < 0.05). These associations were not replicated in ET2DS (all P > 0.1). If the positive associations withstand, then this study could suggest that higher uric acid levels may be associated with increased performance on memory-related tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.