The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5 and 7 but not Hdac9. Here we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4,5 and 7 are simultaneously removed, the Myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury.
The peripheral nervous system (PNS) has a remarkable regenerative capacity in comparison to the central nervous system (CNS), a phenomenon that is impaired during ageing. The ability of PNS axons to regenerate after injury is due to Schwann cells (SC) being reprogrammed into a repair phenotype called Repair Schwann cells. These repair SCs are crucial for supporting axonal growth after injury, myelin degradation in a process known as myelinophagy, neurotropic factor secretion, and axonal growth guidance through the formation of Büngner bands. After regeneration, repair SCs can remyelinate newly regenerated axons and support nonmyelinated axons. Increasing evidence points to an epigenetic component in the regulation of repair SC gene expression changes, which is necessary for SC reprogramming and regeneration. One of these epigenetic regulations is histone acetylation by histone acetyl transferases (HATs) or histone deacetylation by histone deacetylases (HDACs). In this review, we have focused particularly on three HDAC classes (I, II, and IV) that are Zn2+-dependent deacetylases. These HDACs are important in repair SC biology and remyelination after PNS injury. Another key aspect explored in this review is HDAC genetic compensation in SCs and novel HDAC inhibitors that are being studied to improve nerve regeneration.
ObjectiveTo identify novel genetic mechanisms causing Charcot-Marie-Tooth (CMT) disease. MethodsWe performed a next-generation sequencing study of 34 genes associated with CMT in a patient with peripheral neuropathy. ResultsWe found a non-previously described mutation in EGR2 (p.P397H). P397H mutation is located within the loop that connects zinc fingers 2 and 3, a pivotal domain for the activity of this transcription factor. Using promoter activity luciferase assays, we found that this mutation promotes decreased transcriptional activity of EGR2. In this patient, we also found a previously described nonpathogenic polymorphism in lipopolysaccharide-induced TNF-α factor (LITAF) (p.T49M). We show that the p.T49M mutation decreases the steady-state levels of the LITAF protein in Schwann cells. Loss of function of LITAF has been shown to produce deregulation in the NRG1-erbB signaling, a pivotal pathway for EGR2 expression by Schwann cells. Surprisingly, our segregation study demonstrates that p.P397H mutation in EGR2 is not sufficient to produce CMT disease. Most notably, only those patients expressing simultaneously the LITAF T49M polymorphism develop peripheral neuropathy. ConclusionsOur data support that the LITAF loss-of-function interferes with the expression of the transcriptional-deficient EGR2 P397H mutant hampering Schwann cell differentiation and suggest that in vivo both genes act in tandem to allow the proper development of myelin. All Demyelinating disease (CNS)following collection(s):This article, along with others on similar topics, appears in the& Licensing http://ng.neurology.org/misc/about.xhtml#permissions its entirety can be found online at: Information about reproducing this article in parts (figures,tables) or in Reprints http://ng.neurology.org/misc/addir.xhtml#reprintsus Information about ordering reprints can be found online: reserved. Online
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.