Recent and past observations of chemical and physical peculiarities in the atmosphere of Venus have renewed speculations about the existence of life in its clouds. To find signs of Venusian life, a dedicated astrobiological space exploration mission is required, and for this reason the Venus Life Finder mission is currently being prepared. A Venus Life Finder mission will require dedicated and specialized instruments to hunt for biosignatures and habitability indicators. In this contribution, we present the ORIGIN space instrument, a laser desorption/laser ablation ionization mass spectrometer. This instrument is designed to detect large, non-volatile molecules, specifically biomolecules such as amino acids and lipids. At the same time, it can also be used in ablation mode for elemental composition analysis. Recent studies with this space prototype instrument of amino acids, polycyclic aromatic hydrocarbons, lipids, salts, metals, sulphur isotopes, and microbial elemental composition are discussed in the context of studies of biosignatures and habitability indicators in Venus’s atmosphere. The implementation of the ORIGIN instrument into a Venus Life Finder mission is discussed, emphasizing the low weight and low power consumption of the instrument. An instrument design and sample handling system are presented that make optimal use of the capabilities of this instrument. ORIGIN is a highly versatile instrument with proven capabilities to investigate and potentially resolve many of the outstanding questions about the atmosphere of Venus and the presence of life in its clouds.
Polycyclic aromatic hydrocarbons (PAHs) are found on various planetary surfaces in the solar system. They are proposed to play a role in the emergence of life, as molecules that are important for biological processes could be derived from them. In this work, four PAHs (pyrene, perylene, anthracene, and coronene) were measured using the ORganics Information Gathering INstrument system (ORIGIN), a lightweight laser desorption ionization-mass spectrometer designed for space exploration missions. In this contribution, we demonstrate the current measurement capabilities of ORIGIN in detecting PAHs at different concentrations and applied laser pulse energies. Furthermore, we show that chemical processing of the PAHs during measurement is limited and that the parent mass can be detected in the majority of cases. The instrument achieves a 3σ detection limit in the order of femtomol mm−2 for all four PAHs, with the possibility of further increasing this sensitivity. This work illustrates the potential of ORIGIN as an instrument for the detection of molecules important for the emergence or presence of life, especially when viewed in combination with previous results by the instrument, such as the identification of amino acids. ORIGIN could be used on a lander or rover platform for future in situ missions to targets in the solar system, such as the icy moons of Jupiter or Saturn.
The detection of biomolecules on Solar System bodies can help us to understand how life emerged on Earth and how life may be distributed in our Solar System. However, the detection of chemical signatures of life on planets or their moons is challenging. A variety of parameters must be considered, such as a suited landing site location, geological and environmental processes favourable to life, life detection strategies, and the application of appropriate and sensitive instrumentation. In this contribution, recent results obtained using our novel laser desorption mass spectrometer ORganics INformation Gathering Instrument (ORIGIN), an instrument designed for in situ space exploration, are presented. We focus in this paper on the detection and identification of amino acid extracts from a natural permafrost sample, as well as in an analogue mixture of soils and amino acids. The resulting dataset was analysed using a correlation network analysis method. Based on mass spectrometric correlation, amino acid signatures were separated from soil signatures, identifying chemically different molecular components in complex samples. The presented analysis method represents an alternative to the typically applied spectra-by-spectra analysis for the evaluation of mass spectrometric data and, therefore, is of high interest for future application in space exploration missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.