Over the past decade high‐throughput DNA sequencing approaches, namely whole exome and whole genome sequencing became a standard procedure in Mendelian disease diagnostics. Implementation of these technologies greatly facilitated diagnostics and shifted the analysis paradigm from variant identification to prioritisation and evaluation. The diagnostic rates vary widely depending on the cohort size, heterogeneity, and disease and range from around 30% to 50% leaving the majority of patients undiagnosed. Advances in omics technologies and computational analysis provide an opportunity to increase these unfavourable rates by providing evidence for disease‐causing variant validation and prioritisation. This review aims to provide an overview of the current application of several omics technologies including RNA‐sequencing, proteomics, metabolomics and DNA‐methylation profiling for diagnostics of rare genetic diseases in general and inborn errors of metabolism in particular.This article is protected by copyright. All rights reserved.
Recent studies have demonstrated that the brain activity of a group of people can be used to forecast choices at the population level. In this study, we attempted to neuroforecast aggregate consumer behavior of Internet users. During our electroencephalography (EEG) and eye-tracking study, participants were exposed to 10 banners that were also used in the real digital marketing campaign. In the separate online study, we additionally collected self-reported preferences for the same banners. We explored the relationship between the EEG, eye-tracking, and behavioral indexes obtained in our studies and the banners’ aggregate efficiency provided by the large food retailer based on the decisions of 291,301 Internet users. An EEG-based engagement index (central beta/alpha ratio) significantly correlated with the aggregate efficiency of banners. Furthermore, our multiple linear regression models showed that a combination of eye-tracking, EEG and behavioral measurements better explained the market-level efficiency of banner advertisements than each measurement alone. Overall, our results confirm that neural signals of a relatively small number of individuals can forecast aggregate behavior at the population level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.