Persisters are a subpopulation of bacteria that resist killing by antibiotics, even though they are genetically similar to their drug-susceptible counterpart. Like in several other bacteria, persisters are also reported in the human pathogen Mycobacterium tuberculosis (Mtb). Stochastic formation of Mtb persisters with a high level of antimicrobial tolerance set the stage for subsequent multidrug-resistant mutations. Despite significant advancement in our understanding, much remains to be learnt about the biology of this drug-recalcitrant bacterial subpopulation. Most of the information pertaining to the metabolic evolution required for emergence of drug tolerance in tuberculosis (TB) pathogens has come from transcriptional, metabolomic, and mutagenesis studies. Since proteins are the key functional molecules regulating the majority of metabolic activities in the cell, investigation of the whole-cell protein expression profile will further provide valuable insights into the physiology of Mtb persisters. We performed a quantitative proteomic analysis of Mtb H37Rv cultured under an in vitro persistence model to identify the proteomic profile of the phenotypic drug-tolerant bacterial population. Our study reveals that proteins related to intermediary metabolism and respiration, cell-wall and cell processes, lipid metabolism, information pathways, and virulence, detoxification and adaptation functional categories are primarily modulated in the persister subpopulation. Further, we demonstrate that various surface-localized mycobacterial membrane protein large (MmpL) proteins, which exhibit a high level of expression in Mtb persisters, are crucial for the mycobacterial survival during persistent growth state. A drug-induced persister subpopulation of Mtb exhibit various differentially regulated proteins that might be critical in mitigating the antimicrobial effect of drugs and can be further explored to develop novel anti-TB agents. The peptide identifications and tandem mass spectra (MS/MS) have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013621.
M. tuberculosis is exposed to variety of extracellular stressful conditions and has evolved mechanisms to endure and adapt to the adverse conditions for survival. mHtpG, despite being dispensable for M. tuberculosis growth under in vitro conditions, exhibits a strong and direct association with DnaJ2 cochaperone and assists the mycobacterial DnaK/DnaJ/GrpE (KJE) chaperone system. These findings suggest the potential role of mHtpG in stress management of the pathogen.
Survival response of the human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb) to a diverse environmental cues is governed through its versatile transcription regulatory mechanisms with the help of a large pool of transcription regulators (TRs). Rv1830 is one such conserved TR, which remains uncharacterized in Mtb. It was named as McdR based on an effect on cell division upon its overexpression in Mycobacterium smegmatis. Recently, it has been implicated in antibiotic resilience in Mtb and reannotated as ResR. While Rv1830 affects cell division by modulating the expression of M. smegmatis whiB2, the underlying cause of its essentiality and regulation of drug resilience in Mtb is yet to be deciphered. Here we show that ResR/McdR, encoded by ERDMAN_2020 in virulent Mtb Erdman, is pivotal for bacterial proliferation and crucial metabolic activities. Importantly, ResR/McdR directly regulates ribosomal gene expression and protein synthesis, requiring distinct disordered N-terminal sequence. Compared to control, bacteria depleted with resR/mcdR exhibit delayed recovery post-antibiotic treatment. A similar effect upon knockdown of rplN operon genes further implicates ResR/McdR-regulated protein translation machinery in attributing drug resilience in Mtb. Overall, findings from this study suggest that chemical inhibitors of ResR/McdR may be proven effective as adjunctive therapy for shortening the duration of TB treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.