Many plant pathogenic filamentous fungi undergo fusion of conidia through conidial anastomosis tubes (CATs), which is believed to facilitate horizontal gene transfer between species. We discovered a remarkable inter-specific CAT fusion between two important plant fungal pathogens Colletotrichum gloeosporioides and C. siamense. In an invitro assay, under no selection pressure, the inter-specific CAT fusion was preferred with higher frequency (25% ± 5%) than intra-specific CAT fusion (11% ± 3.6%). Different stages of CAT fusion viz. CAT induction, homing, and fusion were observed during this inter-specific CAT fusion. The CAT fusion was found to be higher in absence of nutrients and under physiological stresses. This CAT fusion involved a quorum sensing phenomenon, wherein the CAT induction was dependent on conidial density and the putative quorum sensing molecule was extractable in chloroform. Movement of nuclei, mitochondria, and lipid droplets were observed during the CAT fusion. Post CAT fusion, the resulting conidia gave rise to putative heterokaryotic progenies with variable colony characteristics as compared to their parental strains. Few heterokaryons showed variable AFLP banding pattern compared to their parental strains, thereby suggesting a possible genetic exchange between the two species through CAT fusion. The heterokaryotic progenies exhibited varied fitness under different stress conditions. Our study illustrated a possible role of inter-specific CAT fusion in generation of genetic and phenotypic diversity in these fungal pathogens.
The conidia of a hemibiotrophic fungus, Colletotrichum gloeosporioides, can conventionally form a germ tube (GT) and develop into a fungal colony. Under certain conditions, they tend to get connected through a conidial anastomosis tube (CAT) to share the nutrients. CAT fusion is believed to be responsible for the generation of genetic variations in few asexual fungi, which appears problematic for effective fungal disease management. The physiological and molecular requirements underlying the GT formation versus CAT fusion remained underexplored. In the present study, we have deciphered the physiological prerequisites for GT formation versus CAT fusion in C. gloeosporioides. GT formation occurred at a high frequency in the presence of nutrients, while CAT fusion was found to be higher in the absence of nutrients. Younger conidia were found to form GT efficiently, while older conidia preferentially formed CAT. Whole transcriptome analysis of GT and CAT revealed highly differential gene expression profiles, wherein 11,050 and 9786 genes were differentially expressed during GT formation and CAT fusion, respectively. A total of 1567 effector candidates were identified; out of them, 102 and 100 were uniquely expressed during GT formation and CAT fusion, respectively. Genes coding for cell wall degrading enzymes, germination, hyphal growth, host-fungus interaction, and virulence were highly upregulated during GT formation. Meanwhile, genes involved in stress response, cell wall remodeling, membrane transport, cytoskeleton, cell cycle, and cell rescue were highly upregulated during CAT fusion. To conclude, the GT formation and CAT fusion were found to be mutually exclusive processes, requiring differential physiological conditions and sets of DEGs in C. gloeosporioides. This study will help in understanding the basic CAT biology in emerging fungal model species of the genus Colletotrichum.
Colletotrichum gloeosporioides is an economically important fungal pathogen causing substantial yield losses indifferent host plants. To understand the genetic diversity and molecular epidemiology of this fungus, we have developed a novel, high-resolution multi-locus microsatellite typing (MLMT) method. Bioinformatic analysis of C. gloeosporioides unannotated genome sequence yielded eight potential microsatellite loci, of which five, CG1 (GT)n, CG2 (GT1)n, CG3 (TC)n, CG4 (CT)n, and CG5 (CT1)n were selected for further study based on their universal amplification potential, reproducibility, and repeat number polymorphism. The selected microsatellites were used to analyze 31 strains of C. gloeosporioides isolated from 20 different host plants from India. All microsatellite loci were found to be polymorphic, and the approximate fragment sizes of microsatellite loci CG1, CG2, CG3, CG4, and CG5 were in ranges of 213–241, 197–227, 231–265, 209–275, and 132–188, respectively. Among the 31 isolates, 55 different genotypes were identified. The Simpson's index of diversity (D) values for the individual locus ranged from 0.79 to 0.92, with the D value of all combined five microsatellite loci being 0.99. Microsatellite data analysis revealed that isolates from Ocimum sanctum, Capsicum annuum (chili pepper), and Mangifera indica (mango) formed distinct clusters, therefore exhibited some level of correlation between certain genotypes and host. The developed MLMT method would be a powerful tool for studying the genetic diversity and any possible genotype-host correlation in C. gloeosporioides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.