Crystalline hydrate of double cesium europium sulfate [CsEu(H2O)3(SO4)2]·H2O was synthesized by the crystallization from an aqueous solution containing equimolar amounts of 1Cs+:1Eu3+:2SO42− ions. Anhydrous salt CsEu(SO4)2 was formed as a result of the thermal dehydration of the crystallohydrate. The unusual effects observed during the thermal dehydration were attributed to the specific coordination of water molecules in the [CsEu(H2O)3(SO4)2]·H2O structure. The crystal structure of [CsEu(H2O)3(SO4)2]·H2O was determined by a single crystal X-ray diffraction analysis, and the crystal structure of CsEu(SO4)2 was obtained by the Rietveld method. [CsEu(H2O)3(SO4)2]·H2O crystallizes in the monoclinic system, space group P21/c (a = 6.5574(1) Å, b = 19.0733(3) Å, c = 8.8364(2) Å, β = 93.931(1)°, V = 1102.58(3) Å3). The anhydrous sulfate CsEu(SO4)2 formed as a result of the thermal destruction crystallizes in the monoclinic system, space group C2/c (a = 14.327(1) Å, b = 5.3838(4) Å, c = 9.5104(6) Å, β = 101.979(3) °, V = 717.58(9) Å3). The vibration properties of the compounds are fully consistent with the structural models and are mainly determined by the deformation of non-rigid structural elements, such as H2O and SO42−. As shown by the diffused reflection spectra measurements and DFT calculations, the structural transformation from [CsEu(H2O)3(SO4)2]·H2O to CsEu(SO4)2 induced a significant band gap reduction. A noticeable difference of the luminescence spectra between cesium europium sulfate and cesium europium sulfate hydrate is detected and explained by the variation of the extent of local symmetry violation at the crystallographic sites occupied by Eu3+ ions, namely, by the increase in inversion asymmetry in [CsEu(H2O)3(SO4)2]·H2O and the increase in mirror asymmetry in CsEu(SO4)2. The chemical shift of the 5D0 energy level in cesium europium sulfate hydrate, with respect to cesium europium sulfate, is associated with the presence of H2O molecules in the vicinity of Eu3+ ion.
Ternary sulfides BaPrCuS3 and BaSmCuS3 are first synthesized by the sulphidation reaction of a mixture of related oxides and metal Cu in a flow of (CS2, H2S) at 1170 K. The crystal structures of BaPrCuS3 and BaSmCuS3 are obtained by Rietveld method. BaPrCuS3 crystallizes in space group
The process of high-temperature oxidation of EuS in the air was explored in the temperature range of 500-1000°C. The oxidation reaction enthalpy was determined (ΔH 0 exp =-1718.5 kJ/mol). The study of oxidation products allowed to establish the mechanism of EuS oxidation with oxygen. At 500-600°C, EuS is oxidized to a mixture of Eu 3+ -containing compounds (Eu 3 S 4 , Eu 2 O 2 S). In the range of 700-1000°C, only europium sulfate Eu 2 O 2 SO 4 is formed. The structure refinement for Eu 2 O 2 SO 4 was performed by the Rietveld method. The luminescence intensity of europium oxysulfate Eu 2 O 2 SO 4 with characteristic 4f-4f transitions from the 5 D 0 state was investigated as a function of oxidation temperature.
Rare earth fluorides are mainly obtained from aqueous solutions of oxygen-containing precursors. Probably, this method is simple and efficient, however, oxygen may partially be retained in the fluoride structure. We offer an alternative method: obtaining fluorides and solid solutions based on them from an oxygen-free precursor. As starting materials, we choose sulfides of rare-earth elements and solid solutions based on them. The fluorination is carried out by exposure to hydrofluoric acid of various concentrations. The transmission electron microscopy images revealed the different morphologies of the products, * I. A. Razumkova Fax: +73452597559 E-Mail: razumkova@list.ru [a]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.