Carboxylation of bis(pyrazol-1-yl)alkanes by oxalyl chloride was studied. It was found that 4,4′-dicarboxylic derivatives of substrates with electron-donating methyl groups and short linkers (from one to three methylene groups) can be prepared using this method. Longer linkers lead to significantly lower product yields, which is probably due to instability of the intermediate acid chlorides that are initially formed in the reaction with oxalyl chloride. Thus, bis(pyrazol-1-yl)methane gave only monocarboxylic derivative even with a large excess of oxalyl chloride and prolonged reaction duration. An alternative approach involves the reaction of ethyl 4-pyrazolecarboxylates with dibromoalkanes in a superbasic medium (potassium hydroxide–dimethyl sulfoxide) and is suitable for the preparation of bis(4-carboxypyrazol-1-yl)alkanes with both short and long linkers independent of substitution in positions 3 and 5 of pyrazole rings. The obtained dicarboxylic acids are interesting as potential building blocks for metal-organic frameworks.
The molecular structure of bis(pyrazol-1-yl)methane-4,4′-dicarboxylic acid (H2bpmdc) was determined by single crystal X-Ray diffraction analysis. The compound crystallizes in a monoclinic crystal system; the unit cell contains four formula units. The molecules of H2bpmdc are linked into zig-zag chains by intermolecular carboxyl–carboxyl hydrogen bonds. Other types of supramolecular interactions, namely, CH···N and CH···O short contacts, CH–π interactions and carbonyl–carbonyl interactions were detected in the crystal structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.