This study determined the genotype effects of interleukin (IL)-6/IL-6R single nucleotide polymorphisms (SNPs) on circulating levels of different cytokines in healthy and coronary artery disease (CAD) patients with different allele frequencies. In the control patients, rs1800795 showed significant differences in IL-18 concentrations between CC and CG and CC and GG genotypes (P=0.003 and 0.004, respectively). Furthermore, circulatory IL-1β was significantly different between GC and GG genotypes from the same SNP (P=0.038). In the diseased patients, significance was determined only for IL-2 (P=0.021) between the C and G homozygote allele carriers of rs1800795. The diseased GC and GG genotype carriers were statistically different for IL-2 (P=0.049) from the rs1800796 and for IL-4 (P=0.049) from the rs2228044. IL-4 was also statistically significant between the GC and CC genotypes from the rs2228043 of the IL-6R gene (P=0.025). The last combination of genotypes in the same gene for the same SNP was statistically significant for IL-10 (P=0.036). According to the logistic regression, only gender (odds ratio [OR] =2.43) and triglycerides (OR =1.98) could be taken as determinants of CAD, while examined SNPs genotypes were not identified as risk factors for CAD. In general, the IL-6 polymorphism genotypes were mainly associated with inflammatory cytokines, while the IL-6R polymorphism genotypes were associated with anti-inflammatory cytokines.
PurposeThe present study investigated the influence of IL-18/18R genetic variants on cytokine expression in patients with stable coronary artery disease (CAD).Materials and methodsThe polymorphisms rs1946518, rs187238, rs326, rs1169288, and rs183130 were determined in patients with and without CAD. Circulating cytokine levels were measured immunologically.ResultsThe rs1946518-GG genotype shows higher IL-18 concentration in the group with CAD, but still not significant. The TG genotype from rs1946518 in carriers with CAD showed a significant decrease in relation to the pro-inflammatory cytokines IL-6, IL-8, and IL-18. The decreases of IL-6 and IL-8 were also specific for rs187238 CAD carriers with the GC genotype. The CAD carriers with the AA genotype from rs326 in the IL-18R gene showed significant increase in IL-8 and IL-18 in comparison with those without CAD. Regarding rs1169288 from the IL-18R gene, IL-8 showed a T allele-dependent increase. In the last rs183130 polymorphism of the IL-18R gene, the pro-inflammatory onset showed a C allele-dependent disease-associated decrease in IL-8 CC and IL-6 CT carriers. In contrast, the CAD CT carriers in relation to IL-8 showed significant increase.ConclusionsMost of the IL-18/18R single-nucleotide polymorphisms were mainly associated with pro-inflammatory cytokines. It is surmised that these associations between some pro-inflammatory cytokines (mainly IL-8) and some IL-18R genotypes in the subjects with CAD from this study are most likely based on inflammatory-induced upregulation of IL-18R expression.
Chronic thromboembolic pulmonary hypertension (CTEPH) develops in 1.5–2.0% of patients experiencing pulmonary embolism (PE) and is characterized by stable pulmonary artery obstruction, heart failure, and poor prognosis. Little is known about involvement of autonomic nervous system (ANS) in the mechanisms of CTEPH. This study was aimed at evaluation of the effect of vagal and sympathetic denervation, as well as stimulation of the parasympathetic nervous system, on the outcomes of CTEPH in rats. CTEPH was induced by multiple intravenous injections of alginate microspheres. Sympathetic and vagal denervation was performed using unilateral surgical ablation of the stellate ganglion and vagotomy, respectively. Stimulation of the parasympathetic nervous system was carried out by administering pyridostigmine. The effect of neuromodulatory effects was assessed in terms of hemodynamics, histology, and gene expression. The results demonstrated the key role of ANS in the development of CTEPH. Sympathetic denervation as well as parasympathetic stimulation resulted in attenuated pulmonary vascular remodeling. These salutary changes were associated with altered MMP2 and TIMP1 expression in the lung and decreased FGFb level in the blood. Unilateral vagotomy had no effect on physiological and morphological outcomes of the study. The data obtained contribute to the identification of new therapeutic targets for CTEPH treatment.
The main objective of this study was to determine the primary intracellular signalling pathway affected by prolonged (2 hours) incubation in interleukin-2 (IL-2). Based on the inflammatory nature of IL-2, priority was given to the involvement of inhibitory-kappaB kinase/nuclear factor-kappaB (IKK/NF-κB) signalling. All of the experiments were performed on freshly prepared cardiomyocytes isolated from rat left ventricles. After isolation, the whole-cell voltage-clamp recordings were performed on single cells. After 2 hours of incubation in IL-2, the current at 0 mV was approximately 100% higher than at the start of the incubation. ACHP, a highly specific kinase β inhibitor, in a concentration of 10 nmol/L, caused significant reduction in the I Ca,L. IL-2 (2 ng/mL) in the presence of 0.1 μmol/L IMD-0354 as a specific inhibitor of IKKβ, caused nearly no changes in the I Ca,L. IL-2 (3 ng/mL) induced a significant increase in phosphorylated NF-κB p65. The cardiomyocytes incubated in a Kraftbrühe solution containing IL-2 plus PDTC as a specific inhibitor of inducible nitric oxide synthase (iNOS) for 2 hours had a similar I Ca,L increase compared to the cells incubated only in IL-2. IL-2-induced enhancement in L-type Ca 2+ channels was mediated by IKK/NF-κB signalling, but not via iNOS-mRNA signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.