Ballistic tests were performed on single-yarn, single-layer and ten-layer targets of Kevlar® KM2 (600 and 850 denier), Dyneema® SK-65 and PBO® (500 denier). The objective was to develop data for validation of numerical models so, multiple diagnostic techniques were used: (1) ultra-high speed photography, (2) high-speed video and (3) nickel-chromium wire technique. These techniques allowed thorough validation of the numerical models through five different paths. The first validation set was at the yarn level, where the transverse wave propagation obtained with analytical and numerical simulations was compared to that obtained in the experiments. The second validation path was at the single-layer level: the propagation of the pyramidal wave observed with the high speed camera was compared to the numerical simulations. The third validation consisted of comparing, for the targets with ten layers, the pyramid apex and diagonal positions from tests and simulations. The fourth validation, which is probably the most relevant, consisted of comparing the numerical and experimental ballistic limits. Finally for the fifth validation set, nickel-chromium wires were used to record electronically the waves propagating in the fabrics. It is shown that for the three materials the waves recorded during the tests match well the waves predicted by the numerical model.
Single-yarn impact results have been reported by multiple authors in the past, providing insight on the fundamental physics involved in fabric impact. This insight allowed developing full fabric models that were able to reproduce properly wave propagation, deflection, and ballistic limits. This paper proposes a similar experimental methodology but for a specific composite material made of ultra-high molecular weight polyethylene. The presence of the polyurethane matrix in the composite is expected to slow down wave propagation. But the high-speed photographic tests reported in this paper indicate that wave propagation in strips and single-layer material is similar to that expected for dry fiber. An explanation is proposed for this unexpected result. This paper also reports the critical velocities (i.e., impact velocities that fail the fibers immediately) measured for the composite material and compares them to the velocities expected from the theory. The velocity is accurately predicted when taking into account wave interactions in front of the projectile. Finally, tests on multilayer composites are presented. In particular, a flash produced under the projectile during the first few microseconds was recorded with high-speed video cameras. A simplified study of the temperature increment upon impact indicates that the material may be reaching the autoignition point. This mechanism is speculated to be the origin of the flash systematically observed.
This article summarizes the characterization work performed on intact and predamaged boron carbide tested in compression under confinement in a pressure vessel or using a thick steel confining sleeve. The focus is on the effect of pressure (up to 2 GPa hydrostatic pressure) on the strength. The techniques used for characterization are described. The failure curves obtained are presented and written as Drucker‐Prager and Mohr‐Coulomb failure criteria. Optical and stereomicroscopy were used to evaluate and document damage. Finally, the results are discussed and compared to the literature. It is shown that data obtained with very different techniques (confined compression, plate impact, and divergent plate impact) overlap, increasing the confidence in the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.