Background:The expression of bio-therapeutic proteins in mammalian cells, such as CHO, attains high homogeneity related to post-translational modifications. Although CHO remains the most popular cell line for bestselling biotherapeutic proteins on the market, there are still drawbacks such as expensive culture media, long time line, and high drug cost. Recently, researches on a novel Leishmania protozoan system have confirmed that this low-level eukaryote could represent a competitive alternative to the mammalian cell lines. Methods: The full length of coding sequence of modified tPA TNKase (tenecteplase) was synthesized and cloned into an inducible expression vector of L. tarentolae T7-TR cells. Results: The expression of the construct was driven by a Tet-inducible promoter. A Leishmania secretory signal sequence was also added to the expression cassette to facilitate the release of the recombinant protein into the medium. The secretory recombinant protein was analyzed and confirmed by SDS-PAGE and Western blot analyses. The expression level of TNKase in this novel system of L. tarentolae was 810 IU/mL after induction, which means that the percentage of expression increases two times compared to previous models in L. tarentolae. The TNKase activity was comparable with Activase. Conclusion: Our results suggested that expressed TNK (modified tPA) is functionally compatible with Activase regarding their effect on fibrinolysis. Given the post-translational modification similarities between mammalian and L. tarentolae, it is speculated that this system is capable of producing complex proteins such as tPA similar to mammalian system, with easier manipulation and non-expensive method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.