Gold nanoparticles encapsulated in a thermoresponsive microgel (pNIPAM) were used as catalysts in the electron-transfer reaction between hexacyanoferrate(III) and borohydride ions. The thermosensitive pNIPAM network can act as a "nanogate" that can be opened or closed to a certain extent, thereby controlling the diffusion of reactants toward the catalytic core. Interestingly, the crosslinker density plays an important role, because it defines the thermal response of the Au@pNIPAM system and, in turn, the extent of the volume change and therefore the polymeric density. The catalytic activity of the encapsulated gold nanoparticles is thus affected both by temperature and by the composition of the shell. A mathematical model reproducing the key features of the temperature-controlled catalysis by our thermosensitive nanoparticles confirms the effect of diffusion rate through the shell on the actual reaction rate.
The synthesis of doubly thermoresponsive PPO-PMPC-PNIPAM triblock copolymer gelators by atom transfer radical polymerization using a PPO-based macroinitiator is described. Provided that the PPO block is sufficiently long, dynamic light scattering and differential scanning calorimetry studies confirm the presence of two separate thermal transitions corresponding to micellization and gelation, as expected. However, these ABC-type triblock copolymers proved to be rather inefficient gelators: free-standing gels at 37 degrees C required a triblock copolymer concentration of around 20 wt%. This gelator performance should be compared with copolymer concentrations of 6-7 wt% required for the PNIPAM-PMPC-PNIPAM triblock copolymers reported previously. Clearly, the separation of micellar self-assembly from gel network formation does not lead to enhanced gelator efficiencies, at least for this particular system. Nevertheless, there are some features of interest in the present study. In particular, close inspection of the viscosity vs temperature plot obtained for a PPO43-PMPC160-PNIPAM81 triblock copolymer revealed a local minimum in viscosity. This is consistent with intramicelle collapse of the outer PNIPAM blocks prior to the development of the intermicelle hydrophobic interactions that are a prerequisite for macroscopic gelation.
Acquisition of a mucoid phenotype by Pseudomonas sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn = 3200 g mol−1) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid Pseudomonas aeruginosa (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining. Structural changes in treated biofilms were quantified using COMSTAT image-analysis software of CLSM z-stack images, and nanoparticle diffusion. Interactions between the oligomers, Ca2+ and DNA were studied using molecular dynamics (MD) simulations, Fourier transform infrared spectroscopy (FTIR) and isothermal titration calorimetry (ITC). Imaging demonstrated that OligoG treatment (≥0.5%) inhibited biofilm formation, revealing a significant reduction in both biomass and biofilm height (P < 0.05). TxRd®-labelled oligomers readily diffused into established (24 h) biofilms. OligoG treatment (≥2%) induced alterations in the EPS of established biofilms; significantly reducing the structural quantities of EPS polysaccharides, and extracellular (e)DNA (P < 0.05) with a corresponding increase in nanoparticle diffusion (P < 0.05) and antibiotic efficacy against established biofilms. ITC demonstrated an absence of rapid complex formation between DNA and OligoG and confirmed the interactions of OligoG with Ca2+ evident in FTIR and MD modelling. The ability of OligoG to diffuse into biofilms, potentiate antibiotic activity, disrupt DNA-Ca2+-DNA bridges and biofilm EPS matrix highlights its potential for the treatment of biofilm-related infections.
We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.
PAPER Jorge Pérez-Juste et al. Reversible assembly of metal nanoparticles induced by penicillamine. Dynamic formation of SERS hot spotsThemed issue: Self-organisation of nanoparticles Reversible assembly of metal nanoparticles induced by penicillamine.We report a systematic study of the surface modification of gold and silver nanoparticles with DLpenicillamine (PEN) and N-acetyl-DL-penicillamine (NAP), motivated by the possibility of inducing pH-controlled reversible nanoparticle assembly. The interaction of PEN and NAP with the metal nanoparticle surface was studied by isothermal titration calorimetry (ITC). The results indicate that equilibrium is reached with the formation of a submonolayer corresponding to ca. 40% and 64% of total surface coverage for PEN and NAP, respectively. Both PEN and NAP modified nanoparticles could be reversibly aggregated at acidic pH due to the protonation of the carboxylic groups, leading to a decrease in their stability by electrostatic interactions and the advent of hydrogen bonding interactions which promote interparticle linkage. The process was monitored by UV-Vis spectroscopy, transmission electron microscopy (TEM) and surface enhanced Raman scattering (SERS) spectroscopy. Interestingly, the SERS characterization demonstrated the pH-controlled formation of hot-spots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.