Biodiversity is in decline due to human‐induced pressures on ecosystems around the world. To be able to counteract this alarming trend, it is paramount to closely monitor biodiversity at global scales. Because this is practically impossible with traditional methods, the last decade has seen a strong push for new solutions. In aquatic ecosystems, the monitoring of species from environmental DNA (eDNA) has emerged as one of the most powerful tools at our disposal, but in terrestrial ecosystems, the power of eDNA for monitoring has so far been hampered by the local scale of the samples. In this study, we report the successful detection of insects from airborne eDNA from samples taken in the field. We compare our results to two traditional insect monitoring methods (1) light traps for moth monitoring and (2) transect walks for the monitoring of butterflies and wild bees. Airborne eDNA metabarcoding revealed DNA from six classes of arthropods, and twelve order of insects—including representatives from the four largest orders: Diptera (flies), Lepidoptera (butterflies and moths), Coleoptera (beetles), and Hymenoptera (bees, wasps, and ants). We did not detect all species observed using traditional methods and suggest further directions for the development of airborne eDNA metabarcoding. We also recovered DNA from nine species of vertebrates, including frogs, birds, and mammals as well as from 12 other phyla. Airborne eDNA has the potential to become a powerful tool for terrestrial biodiversity monitoring, with many impactful applications including the monitoring of pests, invasive, or endangered species and disease vectors.
For its fifth assessment report, the Intergovernmental Panel on Climate Change divided future scenario projections (2005–2100) into two groups: Socio-Economic Pathways (SSPs) and Representative Concentration Pathways (RCPs). Each SSP has country-level urban and rural population projections, while the RCPs are based on radiative forcing caused by greenhouse gases, aerosols and associated land-use change. In order for these projections to be applicable in earth system models, SSP and RCP population projections must be at the same spatial scale. Thus, a gridded population dataset that takes into account both RCP-based urban fractions and SSP-based population projection is needed. To support this need, an annual (2000–2100) high resolution (approximately 1km at the equator) gridded population dataset conforming to both RCPs (urban land use) and SSPs (population) country level scenario data were created.
Savannah regions are predicted to undergo changes in precipitation patterns according to current climate change projections. This change will affect leaf phenology, which controls net primary productivity. It is of importance to study this since savannahs play an important role in the global carbon cycle due to their areal coverage and can have an effect on the food security in regions that depend on subsistence farming. In this study we investigate how soil moisture, mean annual precipitation, and day length control savannah phenology by developing a lagged time series model. The model uses climate data for 15 flux tower sites across four continents, and normalized difference vegetation index from satellite to optimize a statistical phenological model. We show that all three variables can be used to estimate savannah phenology on a global scale. However, it was not possible to create a simplified savannah model that works equally well for all sites on the global scale without inclusion of more site specific parameters. The simplified model showed no bias towards tree cover or between continents and resulted in a cross-validated r2 of 0.6 and root mean squared error of 0.1. We therefore expect similar average results when applying the model to other savannah areas and further expect that it could be used to estimate the productivity of savannah regions.
We present a novel, global 30 arc seconds (∼1 km at the equator) population projection dataset covering each year from 2010 to 2100 that is consistent with both country level population and gridded urban fractions from the Coupled Model Intercomparison Project 6 (CMIP6). While IPCC population projections until 2100 are available at country level for Socio-Economic Pathways (SSPs), land cover (including the urban fraction) is only available for Representative Concentration Pathways (RCPs). To perform simulations of e.g., future supply and demand for agricultural products, fine scale projections of population density are needed for combinations of SSPs and RCPs. Therefore, we generated a 30 arc seconds dataset consistent with both SSPs and RCPs within the framework of the IPCC. This data set is useful in applications where spatially explicit projections of aspects of global change are investigated at a fine spatial scale. For example, if a link function between night-time lights and population density is found based on current satellite images and recent population density data, a projection of night-time light lights can be generated by using this link function with our projected population density. Such a projection can for example be used to evaluate the potential for future light pollution.
Water loss is a crucial factor for vegetation in the semi-arid Sahel region of Africa. Global satellite-driven estimates of plant CO 2 uptake (gross primary productivity, GPP) have been found to not accurately account for Sahelian conditions, particularly the impact of canopy water stress. Here, we identify the main biophysical limitations that induce canopy water stress in Sahelian vegetation and evaluate the relationships between field data and Earth observation-derived spectral products for up-scaling GPP. We find that plant-available water and vapor pressure deficit together control the GPP of Sahelian vegetation through their impact on the greening and browning phases. Our results show that a multiple linear regression (MLR) GPP model that combines the enhanced vegetation index, land surface temperature, and the short-wave infrared reflectance (Band 7, 2105-2155 nm) of the moderate-resolution imaging spectroradiometer satellite sensor was able to explain between 88% and 96% of the variability of eddy covariance flux tower GPP at three Sahelian sites (overall = 89%). The MLR GPP model presented here is potentially scalable at a relatively high spatial and temporal resolution. Given the scarcity of field data on CO 2 fluxes in the Sahel, this scalability is important due to the low number of flux towers in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.