Members of a society interact using a variety of social behaviors, giving rise to a multi-faceted and complex social life. For the study of animal behavior, quantifying this complexity is critical for understanding the impact of social life on animals’ health and fitness. Multilayer network approaches, where each interaction type represents a different layer of the social network, have the potential to better capture this complexity than single layer approaches. Calculating individuals’ centrality within a multilayer social network can reveal keystone individuals and more fully characterize social roles. However, existing measures of multilayer centrality do not account for differences in the dynamics and functionality across interaction layers. Here we validate a new method for quantifying multiplex centrality called consensus ranking by applying this method to multiple social groups of a well-studied nonhuman primate, the rhesus macaque. Consensus ranking can suitably handle the complexities of animal social life, such as networks with different properties (sparse vs. dense) and biological meanings (competitive vs. affiliative interactions). We examined whether individuals’ attributes or socio-demographic factors (sex, age, dominance rank and certainty, matriline size, rearing history) were associated with multiplex centrality. Social networks were constructed for five interaction layers (i.e., aggression, status signaling, conflict policing, grooming and huddling) for seven social groups. Consensus ranks were calculated across these five layers and analyzed with respect to individual attributes and socio-demographic factors. Generalized linear mixed models showed that consensus ranking detected known social patterns in rhesus macaques, showing that multiplex centrality was greater in high-ranking males with high certainty of rank and females from the largest families. In addition, consensus ranks also showed that females from very small families and mother-reared (compared to nursery-reared) individuals were more central, showing that consideration of multiple social domains revealed individuals whose social centrality and importance might otherwise have been missed.
High-centrality nodes have disproportionate influence on the behavior of a network; therefore controlling such nodes can efficiently steer the system to a desired state. Existing multiplex centrality measures typically rank nodes assuming the layers are qualitatively similar. Many real systems, however, are comprised of networks heterogeneous in nature, for example, social networks may have both agnostic and affiliative layers. Here, we use rank aggregation methods to identify intervention targets in multiplex networks when the structure, the dynamics, and our intervention goals are qualitatively different for each layer. Our approach is to rank the nodes separately in each layer considering their different function and desired outcome, and then we use Borda count or Kemeny aggregation to identify a consensus ranking -top nodes in the consensus ranking are expected to effectively balance the competing goals simultaneously among all layers. To demonstrate the effectiveness of consensus ranking, we apply our method to a degree-based node removal procedure such that we aim to destroy the largest component in some layers, while maintaining large-scale connectivity in others. For any multi-objective intervention, optimal targets only exist in the Pareto-sense; we, therefore, use a weighted generalization of consensus ranking to investigate the trade-off between the competing objectives. We use a collection of model and real networks to systematically investigate how this trade-off is affected by multiplex network structure. We use the copula representation of the multiplex centrality distributions to generate model multiplex networks with given rank correlations. This allows us to separately manipulate the marginal centrality distribution of each layer and the interdependence between the layers, and to investigate the role of the two using both analytical and numerical methods. * posfai@ucdavis.edu
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.