Although animals such as spiders, fish, and birds have very different anatomies, the basic mechanisms that govern their perception, decision-making, learning, reproduction, and death have striking similarities. These mechanisms have apparently allowed the development of general intelligence in nature. This led us to the idea of approaching artificial general intelligence (AGI) by constructing a generic artificial animal (animat) with a configurable body and fixed mechanisms of perception, decision-making, learning, reproduction, and death. One instance of this generic animat could be an artificial spider, another an artificial fish, and a third an artificial bird. The goal of all decision-making in this model is to maintain homeostasis. Thus actions are selected that might promote survival and reproduction to varying degrees. All decision-making is based on knowledge that is stored in network structures. Each animat has two such network structures: a genotype and a phenotype. The genotype models the initial nervous system that is encoded in the genome (“the brain at birth”), while the phenotype represents the nervous system in its present form (“the brain at present”). Initially the phenotype and the genotype coincide, but then the phenotype keeps developing as a result of learning, while the genotype essentially remains unchanged. The model is extended to ecosystems populated by animats that develop continuously according to fixed mechanisms for sexual or asexual reproduction, and death. Several examples of simple ecosystems are given. We show that our generic animat model possesses general intelligence in a primitive form. In fact, it can learn simple forms of locomotion, navigation, foraging, language, and arithmetic.
We start by discussing the link between ecosystem simulators and general AI. Then we present the open-source ecosystem simulator Ecotwin, which is based on the game engine Unity and operates on ecosystems containing inanimate objects like mountains and lakes, as well as organisms such as animals and plants. Animal cognition is modeled by integrating three separate networks: (i) a reflex network for hard-wired reflexes; (ii) a happiness network that maps sensory data such as oxygen, water, energy, and smells, to a scalar happiness value; and (iii) a policy network for selecting actions. The policy network is trained with reinforcement learning (RL), where the reward signal is defined as the happiness difference from one time step to the next. All organisms are capable of either sexual or asexual reproduction, and they die if they run out of critical resources. We report results from three studies with Ecotwin, in which natural phenomena emerge in the models without being hardwired. First, we study a terrestrial ecosystem with wolves, deer, and grass, in which a Lotka-Volterra style population dynamics emerges. Second, we study a marine ecosystem with phytoplankton, copepods, and krill, in which a diel vertical migration behavior emerges. Third, we study an ecosystem involving lethal dangers, in which certain agents that combine RL with reflexes outperform pure RL agents.
We present a deep neural-network model for lifelong learning inspired by several forms of neuroplasticity. The neural network develops continuously in response to signals from the environment. In the beginning the network is a blank slate with no nodes at all. It develops according to four rules: (i) expansion, which adds new nodes to memorize new input combinations; (ii) generalization, which adds new nodes that generalize from existing ones; (iii) forgetting, which removes nodes that are of relatively little use; and (iv) backpropagation, which fine-tunes the network parameters. We analyze the model from the perspective of accuracy, energy efficiency, and versatility and compare it to other network models, finding better performance in several cases.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.