Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information. NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=20900e4b-251a-45fe-bf49-a95e352fe29e http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=20900e4b-251a-45fe-bf49-a95e352fe29e Sciences, National Research Council of Canada, 100 Sussex DriVe, Ottawa, Ontario K1A 0R6, Canada ReceiVed: March 26, 2007; In Final Form: May 25, 2007 The reaction dynamics of excited electronic states in nucleic acid bases is a key process in DNA photodamage. Recent ultrafast spectroscopy experiments have shown multicomponent decays of excited uracil and thymine, tentatively assigned to nonadiabatic transitions involving multiple electronic states. Using both quantum chemistry and first principles quantum molecular dynamics methods we show that a true minimum on the bright S 2 electronic state is responsible for the first step that occurs on a femtosecond time scale. Thus the observed femtosecond decay does not correspond to surface crossing as previously thought. We suggest that subsequent barrier crossing to the minimal energy S 2 /S 1 conical intersection is responsible for the picosecond decay.
Subcycle strong-field ionization (SFI) underlies many emerging spectroscopic probes of atomic or molecular attosecond electronic dynamics. Extending methods such as attosecond high harmonic generation spectroscopy to complex polyatomic molecules requires an understanding of multielectronic excitations, already hinted at by theoretical modeling of experiments on atoms, diatomics, and triatomics. Here, we present a direct method which, independent of theory, experimentally probes the participation of multiple electronic continua in the SFI dynamics of polyatomic molecules. We use saturated (n-butane) and unsaturated (1,3-butadiene) linear hydrocarbons to show how subcycle SFI of polyatomics can be directly resolved into its distinct electronic-continuum channels by above-threshold ionization photoelectron spectroscopy. Our approach makes use of photoelectron-photofragment coincidences, suiting broad classes of polyatomic molecules.
Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information. NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://doi.org/10.1021/jp076800eAccess and use of this website and the material on it are subject to the Terms and Conditions set forth at Electronic structure of adenine and thymine base pairs studied by femtosecond electron-ion coincidence spectroscopy Gador, Niklas; Samoylova, Elena; Smith, Valoris Reid; Stolow, Albert; Rayner, David M.; Radloff, Wolfgang; Hertel, Ingolf Volker; Schultz, Thomas http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/droits L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB. NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=db4ea838-d64b-464c-aa0b-a7edab815e24 http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=db4ea838-d64b-464c-aa0b-a7edab815e24 Sciences, National Research Council, 100 Sussex DriVe, Ottawa, K1A 0R6 Canada, and Max Born Institute, 12489 Berlin-Adlershof, Germany ReceiVed: August 24, 2007; In Final Form: September 6, 2007 Femtosecond pump-probe spectroscopy was combined with photoelectron-photoion coincidence detection to investigate the electronic structure and dynamics of isolated adenine (A) and thymine (T) dimers and the adenine-thymine (AT) base pair. The photoelectron spectra show that ππ* and nπ* states are only weakly perturbed in the hydrogen-bound dimers as compared to the monomers. For cationic base pairs with internal energies greater than 1 eV, we observed considerable cluster fragmentation into protonated monomers. This process selectively removed signals from the nπ* f n -1 ionization channel in all dimers. The photoelectron spectra are compared to time-resolved mass spectra and confirm the assignment of short-lived ππ* and nπ* populations in the adenine, thymine, and mixed AT dimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.