The cuprizone model of toxic demyelination in the central nervous system is commonly used to investigate the pathobiology of remyelination in the corpus callosum. However, in human demyelinating diseases such as multiple sclerosis, recent evidence indicates a considerable amount of cortical demyelination in addition to white matter damage. Therefore, we have investigated cortical demyelination in the murine cuprizone model. To induce demyelination, C57BL/6 mice were challenged with 0.2% cuprizone feeding for 6 weeks followed by a recovery phase of 6 weeks with a cuprizone-free diet. In addition to the expected demyelination in the corpus callosum, the cortex of C57BL/6 mice was completely demyelinated after 6 weeks of cuprizone feeding. After withdrawal of cuprizone the cortex showed complete remyelination similar to that in the corpus callosum. When C57BL/6 mice were fed cuprizone for a prolonged period of 12 weeks, cortical remyelination was significantly delayed. Because interstrain differences have been described, we also investigated the effects of cuprizone on cortical demyelination in BALB/cJ mice. In these mice, cortical demyelination was only partial. Moreover, cortical microglia accumulation was markedly increased in BALB/cJ mice, whereas microglia were absent in the cortex of C57BL/6 mice. In summary, our results show that cuprizone feeding is an excellent model in which to study cortical demyelination and remyelination, including contributing genetic factors represented by strain differences. (Am J Pathol
Sequential myelin protein expression during remyelination reveals fast and efficient repair after central nervous system demyelinationTo understand the mechanisms of remyelination and the reasons for regeneration failure is one of the major challenges in multiple sclerosis research. This requires a good knowledge and reliable analysis of experimental models. This work was undertaken to characterize the pattern of myelin protein expression during experimental remyelination. Acute demyelination of the corpus callosum was induced by feeding of 0.3% cuprizone for 6 weeks, followed by a 10-week remyelination period. We used a combination of Luxol fast blue (LFB) myelin staining, electron microscopy (EM) and immunohistochemistry for the myelin proteins 2′,3′-cyclic nucleotide 3′ phosphodiesterase (CNPase), myelin basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG). Early remyelination was detected by the re-expression of CNPase, MBP and PLP as early as 4 days. MOG, as a marker for late differentiation of oligodendrocytes, was not detectable until 2 weeks of remyelination. EM data correlated well with the LFB myelin staining and myelin protein expression, with 50% of the axons being rapidly remyelinated within 2 weeks. While particularly MBP but also PLP and CNPase are re-expressed very early before significant remyelination is observed by EM, the late marker MOG shows a lag behind the remyelination detected by EM. The presented data indicate that immunohistochemistry for various myelin proteins expressed early and late during myelin formation is a suitable and reliable method to follow remyelination in the cuprizone model. Furthermore, investigation of early remyelination confirms that the intrinsic repair programme is very fast and switched on within days.
Glatiramer acetate (GA) is an approved immunomodulating agent for the treatment of relapsing-remitting multiple sclerosis. Its mode of action is attributed to a T helper cell-type 1 (Th1) to Th2 cytokine shift in T cells. Th2-type GA-reactive T cells migrate into the brain and act suppressive at the sites of inflammation. However, there is increasing evidence that the effect of GA is not confined to T cells. It inhibits broadly the activation of monocytes and induces peritoneal macrophages and monocytes to differentiate into a type 2 antigen-presenting cell (APC) secreting anti-inflammatory cytokines. Thus, we examined whether GA has also direct effects on microglia cells which are involved in modifying/directing the local microenvironment in the central nervous system. Primary rat microglia were purified and cultured under standard conditions. Griess reaction was used to measure one of the stable end products of nitric oxide (NO), nitrite. Tumor necrosis factor (TNF)-alpha and interleukin-10 (IL-10) were measured in the cell culture supernatants using ELISA. Phagocytosis was quantified with a FACS-based assay. Our experiments show that GA directly modulates microglia cells. It promotes the phagocytic activity and increases the secretion of IL-10 while it decreases that of TNFα. In contrast, there was no effect on NO production. GA induces a type 2 APC differentiation of microglia suggesting a general effect on myeloid monocytic cells. Using microglia we report for the first time that GA promotes phagocytosis which could play an important role in removal of debris.
Beside its effects on T cells, a direct influence on cells of the myelo-monocytic lineage by GA becomes evident. Recently, we demonstrated that GA drives microglia to adopt properties of type II antigen presenting cells (APC) and increases their phagocytic activity. In the present work, we focused on human blood monocytes in order to examine whether GA may increase phagocytic activity in vivo and to evaluate the molecular mechanisms explaining this new discovered mode of action. Peripheral blood mononuclear cells (PBMC) were obtained using a Biocoll-Isopaque gradient and monocytes were subsequently isolated by using CD14 MicroBeads. Phagocytic activity was determined by flow cytometric measurement of the ingestion of fluorescent beads. Flow cytometry was also used to assess monocytic differentiation and expression of phagocytic receptors. Monocytes of GA treated MS patients exhibited a significantly higher phagocytic activity than those of healthy controls or non-treated MS patients. In vitro, a significant phagocytic response was already detectable after 1 h of GA treatment at the concentrations of 62.5 and 125 µg/ml. A significant increase at all concentrations of GA was observed after 3 h and 24 h, respectively. Only monocytes co-expressing CD16, particularly CD14++CD16+ cells, were observed to phagocytose. Treatment of monocytes with IL-10 and supernatants from GA-treated monocytes did not alter phagocytosis. We observed a decrease in CD11c expression by GA while no changes were found in the expression of CD11b, CD36, CD51/61, CD91, TIM-3, and CD206. In our blocking assays, treatment with anti-CD14, anti-CD16, anti-TIM3, anti-CD210, and particularly anti-CD36 antibodies led to a decrease in phagocytosis. Our results demonstrate a new mechanism of action of GA treatment that augments phagocytic activity of human monocytes in vivo and in vitro. This activity seems to arise from the CD14++CD16+ monocyte subset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.