Switchavidin is a chicken avidin mutant displaying reversible binding to biotin, an improved binding affinity toward conjugated biotin, and low nonspecific binding due to reduced surface charge. These properties make switchavidin an optimal tool in biosensor applications for the reversible immobilization of biotinylated proteins on biotinylated sensor surfaces. Furthermore, switchavidin opens novel possibilities for patterning, purification, and labeling.
Proteins with high specificity, affinity, and stability are needed for biomolecular recognition in a plethora of applications. Antibodies are powerful affinity tools, but they may also suffer from limitations such as low stability and high production costs. Avidin and streptavidin provide a promising scaffold for protein engineering, and due to their ultratight binding to D-biotin they are widely used in various biotechnological and biomedical applications. In this study, we demonstrate that the avidin scaffold is suitable for use as a novel receptor for several biologically active small molecules: Artificial, chicken avidin-based proteins, antidins, were generated using a directed evolution method for progesterone, hydrocortisone, testosterone, cholic acid, ketoprofen, and folic acid, all with micromolar to nanomolar affinity and significantly reduced biotin-binding affinity. We also describe the crystal structure of an antidin, sbAvd-2(I117Y), a steroid-binding avidin, which proves that the avidin scaffold can tolerate significant modifications without losing its characteristic tetrameric beta-barrel structure, helping us to further design avidin-based small molecule receptors.
The murine inhibitor of carbonic anhydrase (mICA), a member of the transferrin (TF) superfamily of proteins, together with human holo- and apoTF and lactoferrin (LF) were assessed as inhibitors of all catalytically active mammalian (h = human, m = murine) CA isoforms, from CA I to CA XV. mICA was a low nanomolar to subnanomolar inhibitor of hCAs I, II, III, VA, VB, VII and mCAs XV (K(I) of 0.7-44.0 nM) and inhibited the remaining isoforms with K(I) of 185.5-469 nM. hTF, apoTF, and hLF were inhibitors of most of these CAs but with reduced efficiency compared to mICA (K(I) of 18.9-453.8 nM). Biacore surface plasmon resonance and differential scanning calorimetry experiments were also used for obtaining more insights into the interaction between these proteins, which may be useful for drug design of protein-based CA inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.