Purpose: The Mediator complex is a multiprotein assembly, which serves as a hub for diverse signaling pathways to regulate gene expression. Because gene expression is frequently altered in cancer, a systematic understanding of the Mediator complex in malignancies could foster the development of novel targeted therapeutic approaches.Experimental Design: We performed a systematic deconvolution of the Mediator subunit expression profiles across 23 cancer entities (n ¼ 8,568) using data from The Cancer Genome Atlas (TCGA). Prostate cancer-specific findings were validated in two publicly available gene expression cohorts and a large cohort of primary and advanced prostate cancer (n ¼ 622) stained by immunohistochemistry. The role of CDK19 and CDK8 was evaluated by siRNA-mediated gene knockdown and inhibitor treatment in prostate cancer cell lines with functional assays and gene expression analysis by RNAseq.Results: Cluster analysis of TCGA expression data segregated tumor entities, indicating tumor-type-specific Mediator complex compositions. Only prostate cancer was marked by high expression of CDK19. In primary prostate cancer, CDK19 was associated with increased aggressiveness and shorter disease-free survival. During cancer progression, highest levels of CDK19 and of its paralog CDK8 were present in metastases. In vitro, inhibition of CDK19 and CDK8 by knockdown or treatment with a selective CDK8/CDK19 inhibitor significantly decreased migration and invasion.Conclusions: Our analysis revealed distinct transcriptional expression profiles of the Mediator complex across cancer entities indicating differential modes of transcriptional regulation. Moreover, it identified CDK19 and CDK8 to be specifically overexpressed during prostate cancer progression, highlighting their potential as novel therapeutic targets in advanced prostate cancer.
BackgroundLymphocyte activating 3 (LAG3, LAG-3, CD223) is a promising target for immune checkpoint inhibition in clear cell renal cell carcinoma (KIRC). The aim of this study was to investigate the epigenetic regulation ofLAG3in KIRC by methylation.MethodsWe correlated quantitativeLAG3methylation levels with transcriptional activity, immune cell infiltration, and overall survival in a cohort of n=533 patients with KIRC and n=160 normal adjacent tissue (NAT) samples obtained from The Cancer Genome Atlas (TCGA). Furthermore, we analyzedLAG3methylation in peripheral blood mononuclear cells (PBMCs) and KIRC cell lines. We validated correlations between LAG3 expression, immune cell infiltrates, survival, and methylation in an independent KIRC cohort (University Hospital Bonn (UHB) cohort, n=118) by means of immunohistochemistry and quantitative methylation-specific PCR.ResultsWe found differential methylation profiles among PBMCs, NAT, KIRC cell lines, and KIRC tumor tissue. Methylation strongly correlated with LAG3 mRNA expression in KIRCs (TCGA cohort) and KIRC cell lines. In the UHB cohort, methylation correlated with LAG3-positive immune cells and tumor-intrinsic LAG3 protein expression. Furthermore,LAG3methylation strongly correlated with signatures of distinct immune cell infiltrates, an interferon-y signature (TCGA cohort), and immunohistochemically quantified CD45+, CD8+, and CD4+immune cell infiltrates (UHB cohort). LAG3 mRNA expression (TCGA cohort), methylation (both cohorts), and tumor cell-intrinsic protein expression (UHB cohort) was significantly associated with overall survival.ConclusionOur data suggest an epigenetic regulation of LAG3 expression in tumor and immune cells via DNA methylation. LAG3 expression and methylation is associated with a subset of KIRCs showing a distinct clinical course and immunogenicity. Our study provides rationale for further testingLAG3DNA methylation as a predictive biomarker for response to LAG3 immune checkpoint inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.