This study investigates the pharmacokinetic/pharmacodynamic (PK/PD) target attainment of linezolid in patients infected with multidrug-resistant (MDR) tuberculosis (TB).Methods: A pharmacometric model was developed including 244 timed linezolid concentration samples from 39 patients employing NONMEM 7.4. The probability of target attainment (PTA, PK/PD target: unbound (f) area-under-the-concentrationtime-curve (AUC)/minimal inhibitory concentration (MIC) of 119) as well as a regionspecific cumulative fraction of response (CFR) were estimated for different dosing regimens.Results: A one-compartment model with linear elimination with a clearance (CL) of 7.69 L/h (interindividual variability 34.1%), a volume of distribution (Vd) of 45.2 L and an absorption constant (KA) of 0.679 h À1 (interoccasion variability 143.7%) allometric scaled by weight best described the PK of linezolid. The PTA at an MIC of 0.5 mg/L was 55% or 97% if patients receiving 300 or 600 mg twice daily, respectively. CFRs varied greatly among populations and geographic regions. A desirable global CFR of ≥90% was achieved if linezolid was administered at a dose of 600 mg twice daily but not at a dose of 300 mg twice daily. Conclusion:This study showed that a dose of 300 mg twice daily of linezolid might not be sufficient to treat MDR-TB patients from a PK/PD perspective. Thus, it might be recommendable to start with a higher dose of 600 mg twice daily to ensure PK/PD target attainment. Hereby, therapeutic drug monitoring and MIC determination should be performed to control PK/PD target attainment as linezolid shows high variability in its PK in the TB population.
Purpose Quantification of pharmacodynamic interactions is key in combination therapies, yet conventional checkerboard experiments with up to 10 by 10 combinations are labor-intensive. Therefore, this study provides optimized experimental rhombic checkerboard designs to enable an efficient interaction screening with significantly reduced experimental workload. Methods Based on the general pharmacodynamic interaction (GPDI) model implemented in Bliss Independence, a novel rhombic ‘dynamic’ checkerboard design with quantification of bacteria instead of turbidity as endpoint was developed. In stochastic simulations and estimations (SSE), the precision and accuracy of interaction parameter estimations and classification rates of conventional reference designs and the newly proposed rhombic designs based on effective concentrations (EC) were compared. Results Although a conventional rich design with 20-times as many combination scenarios provided estimates of interaction parameters with higher accuracy, precision and classification rates, the optimized rhombic designs with one natural growth scenario, three monotherapy scenarios per combination partner and only four combination scenarios were still superior to conventional reduced designs with twice as many combination scenarios. Additionally, the rhombic designs were able to identify whether an interaction occurred as a shift on maximum effect or EC50 with > 98%. Overall, effective concentration-based designs were found to be superior to traditional standard concentrations, but were more challenged by strong interaction sizes exceeding their adaptive concentration ranges. Conclusion The rhombic designs proposed in this study enable a reduction of resources and labor and can be a tool to streamline higher throughput in drug interaction screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.