Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
Confocal or multi-photon laser scanning microscopes are convenient tools to perform FRAP diffusion measurements. Despite its popularity, accurate FRAP remains often challenging since current methods are either limited to relatively large bleach regions or can be complicated for non-specialists. In order to bring reliable quantitative FRAP measurements to the broad community of laser scanning microscopy users, here we have revised FRAP theory and present a new pixelbased FRAP method relying on the photobleaching of rectangular regions of any size and aspect ratio. The method allows for fast and straightforward quantitative diffusion measurements due to a closed-form expression for the recovery process utilising all available spatial and temporal data. After a detailed validation, its versatility is demonstrated by diffusion studies in heterogeneous biopolymer mixtures.
2010 Optical Society of America
Mixtures of gelatin and maltodextrin in aqueous solution have been quenched to temperatures at which they are initially miscible but where gelatin ordering is initiated. In many cases phase separation was observed to occur after a significant time delay, and the dependence of these delays on quench temperature and biopolymer concentration has been studied in detail using turbidity measurements and confocal laser scanning microscopy (CLSM). Furthermore, by observing the optical rotation (OR) and turbidity of the system simultaneously, the gelatin helix content and the time delay before the onset of phase separation were monitored concurrently. The observed delay times were found to correspond to the time taken for the development of a certain degree of gelatin ordering, which drives the separation process. A further consequence of gelatin ordering is the viscosifying of the solution and, at sufficient concentrations, the formation of a gel. Therefore, rheological measurements have been used in addition to turbidity measurements and CLSM in order to monitor further the structural development of the systems. A comparison of the data obtained from these techniques shows that while the development of a certain elasticity will trap the system morphology, this elasticity is not directly related to that found at the gel point. At low maltodextrin concentrations, where phase separation was not detected by turbidity, transmission electron microscopy (TEM) has been used to examine the microstructure on a smaller length scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.