Neointimal hyperplasia (NIH) and impaired dilatation are important contributors to arteriovenous fistula (AVF) failure. It is unclear whether chronic kidney disease (CKD) itself causes adverse remodeling in arterialized veins. Here we determined if CKD specifically triggers adverse effects on vascular remodeling and assessed whether these changes affect the function of AVFs. For this purpose, we used rats on a normal diet or on an adenine-rich diet to induce CKD and created a fistula between the right femoral artery and vein. Fistula maturation was followed noninvasively by high-resolution ultrasound (US), and groups of rats were killed on 42 and 84 days after surgery for histological and immunohistochemical analyses of the AVFs and contralateral femoral vessels. In vivo US and ex vivo morphometric analyses confirmed a significant increase in NIH in the AVFs of both groups with CKD compared to those receiving a normal diet. Furthermore, we found using histological evaluation of the fistula veins in the rats with CKD that the media shrank and their calcification increased significantly. Afferent artery dilatation was significantly impaired in CKD and the downstream fistula vein had delayed dilation after surgery. These changes were accompanied by significantly increased peak systolic velocity at the site of the anastomosis, implying stenosis. Thus, CKD triggers adverse effects on vascular remodeling in AVFs, all of which contribute to anatomical and/or functional stenosis.
Our AVF model in the rat demonstrates maturation effects in fistula veins similar to typical clinical findings in haemodialysis patients. Noninvasive ultrasound proved to be a valuable tool for longitudinal in vivo monitoring of the fistulas in this rodent model.
Our rat model showed typical cardiovascular features of the AVF maturation process, which strongly resemble clinical findings in patients. Uremia caused inferior dilation in the early phase after surgery and an exacerbation of NIH. This model should help to identify the cellular and molecular mechanisms that contribute to AVF failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.