Abstract-This paper demonstrates the value of improving the discriminating strength of weak classifiers in the context of boosting by using response binning. The reasoning is centered around, but not limited to, the well known Haar-features used by Viola & Jones in their face detection/pedestrian detection systems. It is shown that using a weak classifier based on a single threshold is sub-optimal and in the case of the Haar-feature inadequate. A more general method for features with multi-modal responses is derived that is easily used in boosting mechanisms that accepts a confidence measure, such as the RealBoost algorithm. The method is evaluated by boosting a single stage classifier and compare the performance to previous approaches.
This paper presents a comparative analysis of different pedestrian dataset characteristics. The main goal of the research is to determine what characteristics are desirable for improved training and validation of pedestrian detectors and classifiers. The work focuses on those aspects of the dataset which affect classification success using the most common boosting methods.Dataset characteristics such as image size, aspect ratio, geometric variance and the relative scale of positive class instances (pedestrians) within the training window form an integral part of classification success. This paper will examine the effects of varying these dataset characteristics with a view to determining the recommended attributes of a high quality and challenging dataset. While the primary focus is on characteristics of the positive training dataset, some discussion of desirable attributes for the negative dataset is important and is therefore included. This paper also serves to publish our current pedestrian dataset in various forms for non-commercial use by the scientific community. We believe the published dataset to be one of the largest, most flexible, and representative datasets available for pedestrian/person detection tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.