Fresh data on the timing and speed of the oceanic spawning migration of European eels suggest a new paradigm for spawning ecology.
One objection to the stocking of translocated eels as a management measure for the European eel Anguilla anguilla L. is that these eels may lack the ability to find their way back to the spawning area in the Sargasso Sea because the translocation will confuse their imprinted navigation. We undertook a series of tagging experiments using satellite tags, data storage tags and acoustic tags to test the hypothesis that eels translocated 1200 km from the UK to Sweden differed in their ability to migrate compared to naturally recruited eels. Eels to be tagged were caught in 2 locations, one with a record of eel stocking for more than 20 yr and with a series of barriers to upstream migration and another in a river with only natural immigration and without barriers to upstream migration. In the first year, the naturally recruited and stocked eels were released in a fjord where the initial escapement behaviour could be monitored by acoustic tagging in addition to using archival tags to track the subsequent marine migration. In the second year, eels were tagged with archival or satellite tags and released on the open coast, and only their marine migration was investigated. Eels were tracked more than 2000 km along a route that, after leaving the Skagerrak, followed the Norwegian Trench to the Norwegian Sea, turned south and west along the Faroe-Shetland channel before emerging into the Atlantic Ocean, and then continued west. There were no statistically significant differences in estuarine or oceanic behaviour regarding route, swimming speed and preferred swimming depth between stocked and naturally recruited eels. These results provide the first empirical evidence of a Nordic migration route and do not support the hypothesis that a sequential imprinting of the route during immigration is necessary for adequate orientation or behaviour during the adult spawning migration.
In a mark-recapture study in 2006, migrating European Anguilla anguilla silver eels were caught, tagged and released in the Baltic Sea and recaptures in commercial pound nets examined for possible effects on migration of infection with the swimbladder parasite Anguillicola crassus. The overall recapture rate was 36%. The prevalence of infection was lowest at the northernmost sampling site. There were no significant differences between infected and uninfected A. anguilla in condition indices, body fat content and estimated migration speeds. Parasite infection intensity levels were significantly negatively correlated with times and distances covered between release and recapture, but did not correlate with migration speed. It appears that more heavily infected A. anguilla were relatively more vulnerable to recapture in pound nets. It is hypothesized that parasite-induced damage to the swimbladder inhibited vertical migrations and infected A. anguilla tended to migrate in shallower coastal waters, relatively close to the shore.
Anguillid eels are found globally in fresh, transitional and saline waters and have played an important role in human life for centuries. The population status of several species is now of significant concern. The threats to populations include direct exploitation at different life stages, blockages to migratory routes by dams and other structures, changes in river basin management that impact habitat carrying capacity and suitability, pollution, climate change, diseases and parasites. While much has been done to understand eel biology and ecology, a major challenge is to identify the key research and management questions so that effective and targeted studies can be designed to inform conservation, management and policy. We gathered 30 experts in the field of eel biology and management to review the current state of knowledge for anguillid eel species and to identify the main topics for research. The identified research topics fell into three themes: (a) Lifecycle and Biology; (b) Impacts and (c) Management. Although tropical anguillid eels are by far the least well understood, significant knowledge gaps exist for all species. Considerable progress has been made in the last 20 years, but the status of many species remains of great concern, particularly for northern temperate species. Without improved engagement and coordination at the regional, national and international level, the situation is unlikely to improve. Further, adaptive management mechanisms to respond to developments in science, policy and our knowledge of potential threats are required to ensure the future of these important and enigmatic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.