The chemical industry is transitioning to more sustainable and biobased processes. One key element of this transition is coupling energy fluxes and feedstock utilization for optimizing processes, routes and efficiencies. Here, we show for the first time the coupling of the Kolbe electrolysis at the anode with a subsequent microbial conversion of the cathodically produced coproduct hydrogen. Kolbe electrolysis of valeric acid yields the liquid drop-in fuel additive n-octane. Subsequently, the solvent isopropanol is produced by resting Cupriavidus necator cells using gaseous electrolysis products (esp. CO 2 and H 2 ). The resting microbial cells show carbon efficiencies of up to 41 % and Coulombic/ Faradaic efficiencies of 60 % and 80 % for anodic and cathodic reactions, respectively. The implementation of a paired electrolyser resulted in superior process performances with overall efficiencies of up to 64.4 %.
The transition of today's fossil fuel based chemical industry toward sustainable production requires improvement of established production processes as well as development of new sustainable and bio-based synthesis routes within a circular economy. Thereby, the combination of electrochemical and biotechnological advantages in such routes represents one important keystone. For the electrochemical generation of reactants from gaseous substrates such as O 2 or CO 2 , gas diffusion electrodes (GDE) represent the electrodes of choice since they overcome solubility-based mass transport limitations. Within this article, we illustrate the architecture, function principle and fabrication of GDE. We highlight the application of GDE for conversion of CO 2 using abiotic catalysts for subsequent biosynthesis as well as the application of microbial catalysts at GDE for CO 2 conversion. The reduction of oxygen at GDE is summarized for the application of oxygen depolarized cathodes in microbial fuel cells and generation of H 2 O 2 to drive enzymatic reactions. Finally, engineering aspects such as scale-up and the modeling of GDE-based processes are described. This review presents an update on the application of GDE in bio-based production systems and emphasizes their large potential for sustainable development of new pathways in bioeconomy.bioeconomy, C1-biotechnology, CO 2 conversion, electrobiotechnology, gas diffusion electrode, hydrogen peroxide dependent enzymes | INTRODUCTIONThe combination of electrochemical and microbial as well as enzymatic reactions is well-established in the field of biosensors (Bedendi et al., 2022). In bioeconomy in general, this combination is believed to be highly effective to optimize established processes or to setup new production routes (Harnisch & Urban, 2018). Often, the high selectivity of the biocatalysts is combined with a high energy efficiency of the electrochemical reaction step. Common examples are the electrochemical substitution or regeneration of cofactors
The chemical industry is transitioning to more sustainable and biobased processes. One key element of this transition is coupling energy fluxes and feedstock utilization for optimizing processes, routes and efficiencies. Here, we show for the first time the coupling of the Kolbe electrolysis at the anode with a subsequent microbial conversion of the cathodically produced coproduct hydrogen. Kolbe electrolysis of valeric acid yields the liquid drop-in fuel additive n-octane. Subsequently, the solvent isopropanol is produced by resting Cupriavidus necator cells using gaseous electrolysis products (esp. CO 2 and H 2 ). The resting microbial cells show carbon efficiencies of up to 41 % and Coulombic/ Faradaic efficiencies of 60 % and 80 % for anodic and cathodic reactions, respectively. The implementation of a paired electrolyser resulted in superior process performances with overall efficiencies of up to 64.4 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.