Febrile seizures are the most common type of developmental seizures, affecting up to 5% of children. Experimental complex febrile seizures involving the immature rat hippocampus led to a persistent lowering of seizure threshold despite an upregulation of inhibition. Here we provide a mechanistic resolution to this paradox by showing that, in the hippocampus of rats that had febrile seizures, the long-lasting enhancement of the widely expressed intrinsic membrane conductance Ih converts the potentiated synaptic inhibition to hyperexcitability in a frequency-dependent manner. The altered gain of this molecular inhibition-excitation converter reveals a new mechanism for controlling the balance of excitation-inhibition in the limbic system. In addition, here we show for the first time that h-channels are modified in a human neurological disease paradigm.
The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell-derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.
Epigenetic silencing of the O 6 -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care.Glioblastoma, the most common primary brain tumor in adults, is a rapidly progressive and fatal disease as indicated by a median overall survival (OS) of less than 1 year in a population-based study. 1 The current standard of care comprises surgical resection followed by local radiotherapy as well as concomitant and adjuvant chemotherapy with the DNA methylating agent temozolomide (TMZ). 2 Several independent studies have identified methylation of the O 6 -methylguanine-DNA methyltransferase (MGMT) gene promoter as a biomarker that strongly predicts prolonged progressionfree survival (PFS) and OS in glioblastoma patients treated with TMZ. [3][4][5] The MGMT gene encodes a DNA repair protein that removes alkyl groups from the O 6 -position of guanine (for review, see Ref. 6 ). Thereby, MGMT may counteract the therapeutic efficacy of TMZ and promote treatment failure. Aberrant MGMT promoter methylation may lead to transcriptional repression and lower MGMT protein expression in tumor cells, which may explain the clinical association of MGMT promoter methylation with longer survival of
Molecular imaging studies have recently found inter- and intratumoral heterogeneity in World Health Organization (WHO) grade II gliomas. A correlative analysis with tumor histology, however, is still lacking. For elucidation we conducted the current prospective study. Fifty-five adult patients with an MRI-based suspicion of a WHO grade II glioma were included. [F-18]Fluoroethyltyrosine ((18)FET) uptake kinetic studies were combined with frame-based stereotactic localization techniques and used as a guide for stepwise (1-mm steps) histopathological evaluation throughout the tumor space. In tumors with heterogeneous PET findings, the O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and expression of mutated protein isocitrate dehydrogenase variant R132H (IDH1) were determined inside and outside of hot spot volumes. Metabolic imaging revealed 3 subgroups: the homogeneous WHO grade II glioma group (30 patients), the homogeneous malignant glioma group (10 patients), and the heterogeneous group exhibiting both low- and high-grade characteristics at different sites (15 patients). Stepwise evaluation of 373 biopsy samples indicated a strong correlation with analyses of uptake kinetics (p < 0.0001). A homogeneous pattern of uptake kinetics was linked to homogeneous histopathological findings, whereas a heterogeneous pattern was associated with histopathological heterogeneity; hot spots exhibiting malignant glioma characteristics covered 4-44% of the entire tumor volumes. Both MGMT and IDH1 status were identical at different tumor sites and not influenced by heterogeneity. Maps of (18)FET uptake kinetics strongly correlated with histopathology in suspected grade II gliomas. Anaplastic foci can be accurately identified, and this finding has implications for prognostic evaluation and treatment planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.