ObjectivesTo systematically review, assess the reporting quality of, and discuss improvement opportunities for studies describing machine learning (ML) models for glioma grade prediction.MethodsThis study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-DTA) statement. A systematic search was performed in September 2020, and repeated in January 2021, on four databases: Embase, Medline, CENTRAL, and Web of Science Core Collection. Publications were screened in Covidence, and reporting quality was measured against the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. Descriptive statistics were calculated using GraphPad Prism 9.ResultsThe search identified 11,727 candidate articles with 1,135 articles undergoing full text review and 85 included in analysis. 67 (79%) articles were published between 2018-2021. The mean prediction accuracy of the best performing model in each study was 0.89 ± 0.09. The most common algorithm for conventional machine learning studies was Support Vector Machine (mean accuracy: 0.90 ± 0.07) and for deep learning studies was Convolutional Neural Network (mean accuracy: 0.91 ± 0.10). Only one study used both a large training dataset (n>200) and external validation (accuracy: 0.72) for their model. The mean adherence rate to TRIPOD was 44.5% ± 11.1%, with poor reporting adherence for model performance (0%), abstracts (0%), and titles (0%).ConclusionsThe application of ML to glioma grade prediction has grown substantially, with ML model studies reporting high predictive accuracies but lacking essential metrics and characteristics for assessing model performance. Several domains, including generalizability and reproducibility, warrant further attention to enable translation into clinical practice.Systematic Review RegistrationPROSPERO, identifier CRD42020209938.
PurposeMachine learning has been applied to the diagnostic imaging of gliomas to augment classification, prognostication, segmentation, and treatment planning. A systematic literature review was performed to identify how machine learning has been applied to identify gliomas in datasets which include non-glioma images thereby simulating normal clinical practice.Materials and MethodsFour databases were searched by a medical librarian and confirmed by a second librarian for all articles published prior to February 1, 2021: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science-Core Collection. The search strategy included both keywords and controlled vocabulary combining the terms for: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, as well as related terms. The review was conducted in stepwise fashion with abstract screening, full text screening, and data extraction. Quality of reporting was assessed using TRIPOD criteria.ResultsA total of 11,727 candidate articles were identified, of which 12 articles were included in the final analysis. Studies investigated the differentiation of normal from abnormal images in datasets which include gliomas (7 articles) and the differentiation of glioma images from non-glioma or normal images (5 articles). Single institution datasets were most common (5 articles) followed by BRATS (3 articles). The median sample size was 280 patients. Algorithm testing strategies consisted of five-fold cross validation (5 articles), and the use of exclusive sets of images within the same dataset for training and for testing (7 articles). Neural networks were the most common type of algorithm (10 articles). The accuracy of algorithms ranged from 0.75 to 1.00 (median 0.96, 10 articles). Quality of reporting assessment utilizing TRIPOD criteria yielded a mean individual TRIPOD ratio of 0.50 (standard deviation 0.14, range 0.37 to 0.85).ConclusionSystematic review investigating the identification of gliomas in datasets which include non-glioma images demonstrated multiple limitations hindering the application of these algorithms to clinical practice. These included limited datasets, a lack of generalizable algorithm training and testing strategies, and poor quality of reporting. The development of more robust and heterogeneous datasets is needed for algorithm development. Future studies would benefit from using external datasets for algorithm testing as well as placing increased attention on quality of reporting standards.Systematic Review Registrationwww.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020209938, International Prospective Register of Systematic Reviews (PROSPERO 2020 CRD42020209938).
Background While there are innumerable Machine learning (ML) research algorithms used for segmentation of gliomas, there is yet to be a US FDA cleared product. The aim of this study is to explore the systemic limitations of research algorithms that have prevented translation from concept to product by a review of the current research literature. Methods We performed a systematic literature review on four databases. Of 11,727 articles, 58 articles met the inclusion criteria and were used for data extraction and screening using TRIPOD. Results We found that while many articles were published on ML based glioma segmentation and report high accuracy results, there were substantial limitations in the methods and results portions of the papers that result in difficulty reproducing the methods and translation into clinical practice. Conclusion In addition, we identified that more than a third of the articles used the same publicly available BRaTS and TCIA datasets and are responsible for the majority of patient data on which ML algorithms were trained, which leads to limited generalizability and potential for overfitting and bias.
PURPOSE Nowadays Machine learning (ML) algorithms are often used for segmentation of gliomas, but which algorithms provide the most accurate method for implementation into clinical practice has not fully been identified. We performed a systematic review of the literature to characterize the methods used for glioma segmentation and their accuracy. METHODS In accordance to PRISMA, a literature review was performed on four databases, Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL) and Web of science core-collection first in October 2020 and in February 2021. Keywords and controlled vocabulary included artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Publications were screened in Covidence and the bias analysis was done in agreement with TRIPOD. RESULTS Sixty-six articles were used for data extraction. BRATS and TCIA datasets were used in 36.6% of all studies, with average number of patients being 141 (range: 1 to 622). ML methods represented 45.3% of studies, with deep learning used in 54.7%; Dice score for the tumor core ranged from 0.72 to 0.95. The most common algorithm used in the machine learning papers was support vector machines (SVM) and for deep learning papers, it was Convolutional Neural Networks (CNN). Preliminary TRIPOD analysis yielded an average score from 12 (range: 7-16) with the majority of papers demonstrating deficiencies in description of the ML algorithm, funding role, data acquisition and measures of model performance. CONCLUSION In the last years, many articles were published on segmentation of gliomas using machine learning, thus establishing this method for tumor segmentation with high accuracy. However, the major limitations for clinically applicable use of ML in glioma segmentation include more than one-third of publications use the same datasets, thus limiting generalizability, increase the likelihood of overfitting, show and lack of ML network description and standardization in accuracy reporting.
Tumor segmentation is a laborious process, which impedes the progress of data production for development of classification/prediction algorithms. We present a novel PACS-based workflow for deep learning-based auto-segmentation of gliomas that allows generation of annotated images during clinical workflow. We developed a U-Net auto-segmentation algorithm natively imbedded in PACS and trained on BraTS dataset. Subsequent retraining on tertiary hospital dataset was performed and generation of new segmentations, allowing labeling of 440 gliomas in a three-months period. This novel approach for annotated data generation allows real-time building of large, labeled datasets by experts in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.