In multistage perfect matching problems we are given a sequence of graphs on the same vertex set and asked to find a sequence of perfect matchings, corresponding to the sequence of graphs, such that consecutive matchings are as similar as possible. More precisely, we aim to maximize the intersections, or minimize the unions between consecutive matchings. We show that these problems are NP-hard even in very restricted scenarios.We propose new approximation algorithms and present methods to transfer results between different problem variants without loosing approximation guarantees.
In multistage perfect matching problems, we are given a sequence of graphs on the same vertex set and are asked to find a sequence of perfect matchings, corresponding to the sequence of graphs, such that consecutive matchings are as similar as possible. More precisely, we aim to maximize the intersections, or minimize the unions between consecutive matchings. We show that these problems are NP-hard even in very restricted scenarios. As our main contribution, we present the first non-trivial approximation algorithms for these problems: On the one hand, we devise a tight approximation on graph sequences of length two (2-stage graphs). On the other hand, we propose several general methods to deduce multistage approximations from blackbox approximations on 2-stage graphs.
In a Subgraph Problem we are given some graph and want to find a feasible subgraph that optimizes some measure. We consider Multistage Subgraph Problems (MSPs), where we are given a sequence of graph instances (stages) and are asked to find a sequence of subgraphs, one for each stage, such that each is optimal for its respective stage and the subgraphs for subsequent stages are as similar as possible.We present a framework that provides a (1/ √ 2χ)-approximation algorithm for the 2-stage restriction of an MSP if the similarity of subsequent solutions is measured as the intersection cardinality and said MSP is preficient, i.e., we can efficiently find a single-stage solution that prefers some given subset. The approximation factor is dependent on the instance's intertwinement χ, a similarity measure for multistage graphs.We also show that for any MSP, independent of similarity measure and preficiency, given an exact or approximation algorithm for a constant number of stages, we can approximate the MSP for an unrestricted number of stages.Finally, we combine and apply these results and show that the above restrictions describe a very rich class of MSPs and that proving membership for this class is mostly straightforward. As examples, we explicitly state these proofs for natural multistage versions of Perfect Matching, Shortest s-t-Path, Minimum s-t-Cut and further classical problems on bipartite or planar graphs, namely Maximum Cut, Vertex Cover, Independent Set, and Biclique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.