Abstract-This work presents an approach for both distributed synthesis and control for a network of discrete-time constrained linear systems without central coordinator. Every system in the network is dynamically coupled to a number of neighboring systems and it is assumed that communication among neighbors is possible. A model predictive controller based on distributed optimization is introduced, by which every system in the network can compute feasible and stabilizing control inputs online. Stability of the closed-loop network of systems is guaranteed by introducing local terminal cost functions and sets, which together satisfy invariance conditions in a distributed way. This includes in particular that the local terminal sets are not static but evolve over time. It is shown that synthesis of both quadratic terminal cost functions and corresponding terminal sets can be done by distributed optimization. Finally, closed-loop performance of the proposed controller is demonstrated on a coupled array of inverted pendulums.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.