Road weather conditions such as ice, snow, or heavy rain can have a significant impact on driver safety. In this paper, we present an approach to continuously monitor the road conditions in real time by equipping a fleet of vehicles with sensors. Based on the observed conditions, a physical road weather model is used to forecast the conditions for the following hours. This can be used to deliver timely warnings to drivers about potentially dangerous road conditions. To optimally process the large data volumes, we show how artificial intelligence is used to (1) calibrate the sensor measurements and (2) to retrieve relevant weather information from camera images. The output of the road weather model is compared to forecasts at road weather station locations to validate the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.