It is shown that the compressed word problem of a graph product of finitely generated groups is polynomial time Turing-reducible to the compressed word problems of the vertex groups. A direct corollary of this result is that the word problem for the automorphism group of a right-angled Artin group or a right-angled Coxeter group can be solved in polynomial time. Moreover, it is shown that a restricted variant of the simultaneous compressed conjugacy problem is polynomial time Turing-reducible to the same problem for the vertex groups. A direct corollary of this result is that the word problem for the outer automorphism group of a right-angled Artin group or a right-angled Coxeter group can be solved in polynomial time. Finally, it is shown that the compressed variant of the ordinary conjugacy problem can be solved in polynomial time for right-angled Artin groups.
It is shown that the compressed word problem for an HNNextension H, t | t −1 at = ϕ(a)(a ∈ A) with A finite is polynomial time Turing-reducible to the compressed word problem for the base group H.
Abstract. It is shown that for graph groups (right-angled Artin groups) the conjugacy problem as well as a restricted version of the simultaneous conjugacy problem can be solved in polynomial time even if input words are represented in a compressed form. As a consequence it follows that the word problem for the outer automorphism group of a graph group can be solved in polynomial time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.